Skip to main content
Log in

The complete genome sequence of a second alphabaculovirus from the true armyworm, Mythimna unipuncta: implications for baculovirus phylogeny and host specificity

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The Mythimna unipuncta nucleopolyhedrovirus isolate KY310 (MyunNPV-KY310) is an alphabaculovirus isolated from a true armyworm (Mythimna unipuncta) population in Kentucky, USA. Occlusion bodies of this virus were examined by electron microscopy and the genome sequence was determined by 454 pyrosequencing. MyunNPV-KY310 occlusion bodies consisted of irregular polyhedra measuring 0.8–1.8 µm in diameter and containing multiple virions, with one to six nucleocapsids per virion. The genome sequence was determined to be 156,647 bp with a nucleotide distribution of 43.9% G+C. 152 ORFs and six homologous repeat (hr) regions were annotated for the sequence, including the 38 core genes of family Baculoviridae and an additional group of 26 conserved alphabaculovirus genes. BLAST queries and phylogenetic inference confirmed that MyunNPV-KY310 is most closely related to the alphabaculovirus Leucania separata nucleopolyhedrovirus isolate AH1, which infects Mythimna separata. In contrast, MyunNPV-KY310 did not exhibit a close relationship with Mythimna unipuncta nucleopolyhedrovirus isolate #7, an alphabaculovirus from the same host species. MyunNPV-KY310 lacks the gp64 envelope glycoprotein, which is a characteristic of group II alphabaculoviruses. However, this virus and five other alphabaculoviruses lacking gp64 are placed outside the group I and group II clades in core gene phylogenies, further demonstrating that viruses of genus Alphabaculovirus do not occur in two monophyletic clades. Potential instances of MyunNPV-KY310 ORFs arising by horizontal transfer were detected. Although there are now genome sequences of four different baculoviruses from M. unipuncta, comparison of their genome sequences provides little insight into the genetic basis for their host specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herniou EA, Arif BM, Becnel JJ, Blissard GW, Bonning B, Harrison RL, Jehle JA, Theilmann DA, Vlak JM (2011) Baculoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, Oxford, pp 163–174

    Google Scholar 

  2. Harrison RL, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, Boston, pp 73–131

    Chapter  Google Scholar 

  3. Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. National Center for Biotechnology Information (US), Bethesda

    Google Scholar 

  4. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23. https://doi.org/10.1099/vir.0.067108-0

    Article  CAS  Google Scholar 

  5. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009 pii]

    Article  CAS  PubMed  Google Scholar 

  6. Keathley CP, Harrison RL, Potter DA (2012) Baculovirus infection of the armyworm (Lepidoptera: Noctuidae) feeding on spiny- or smooth-edged grass (Festuca spp.) leaf blades. Biol Control 61:147–154

    Article  Google Scholar 

  7. Harrison RL, Rowley DL, Mowery J, Bauchan GR, Theilmann DA, Rohrmann GF, Erlandson MA (2017) The complete genome sequence of a second distinct betabaculovirus from the true armyworm, Mythimna unipuncta. PLoS ONE 12(1):e0170510. https://doi.org/10.1371/journal.pone.0170510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison RL, Mowery JD, Rowley DL, Bauchan GR, Theilmann DA, Rohrmann GF, Erlandson MA (2018) The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene. Virus Genes 54:297–310. https://doi.org/10.1007/s11262-017-1525-0

    Article  CAS  PubMed  Google Scholar 

  9. Harrison RL, Puttler B, Popham HJ (2008) Genomic sequence analysis of a fast-killing isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus. J Gen Virol 89:775–790. https://doi.org/10.1099/vir.0.83566-0

    Article  CAS  PubMed  Google Scholar 

  10. Harrison RL, Keena MA, Rowley DL (2014) Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America. J Invertebr Pathol 116:27–35. https://doi.org/10.1016/j.jip.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  11. Guo F-B, Zhang C-T (2006) ZCURVE_V: a new self-training system for recognizing protein-coding genes in viral and phage genomes. BMC Bioinform 7:9. https://doi.org/10.1186/1471-2105-7-9

    Article  CAS  Google Scholar 

  12. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Hu ZH, Arif BM, Jin F, Martens JW, Chen XW, Sun JS, Zuidema D, Goldbach RW, Vlak JM (1998) Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 79:2841–2851

    Article  CAS  Google Scholar 

  14. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, vol 41, pp 95–98

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  18. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  19. Jehle JA, Lange M, Wang H, Hu Z, Wang Y, Hauschild R (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346:180–193. https://doi.org/10.1016/j.virol.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  20. Ackermann H-W, Smirnoff WA (1983) A morphological investigation of 23 baculoviruses. J Invertebr Pathol 41:269–280

    Article  Google Scholar 

  21. Garavaglia MJ, Miele SA, Iserte JA, Belaich MN, Ghiringhelli PD (2012) The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. J Virol 86(22):12069–12079. https://doi.org/10.1128/JVI.01873-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Javed MA, Biswas S, Willis LG, Harris S, Pritchard C, van Oers MM, Donly BC, Erlandson MA, Hegedus DD, Theilmann DA (2017) Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J Virol. https://doi.org/10.1128/JVI.02115-16

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xiao H, Qi Y (2007) Genome sequence of Leucania seperata nucleopolyhedrovirus. Virus Genes 35:845–856

    Article  CAS  Google Scholar 

  24. Zanotto PM, Kessing BD, Maruniak JE (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol 62:147–164

    Article  CAS  Google Scholar 

  25. Herniou EA, Jehle JA (2007) Baculovirus phylogeny and evolution. Curr Drug Targets 8:1043–1050

    Article  CAS  Google Scholar 

  26. Breitenbach JE, El-Sheikh el SA, Harrison RL, Rowley DL, Sparks ME, Gundersen-Rindal DE, Popham HJ (2013) Determination and analysis of the genome sequence of Spodoptera littoralis multiple nucleopolyhedrovirus. Virus Res 171:194–208. https://doi.org/10.1016/j.virusres.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  27. Pang Y, Yu J, Wang L, Hu X, Bao W, Li G, Chen C, Han H, Hu S, Yang H (2001) Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287:391–404

    Article  CAS  Google Scholar 

  28. Wang JW, Qi YP, Huang YX, Li SD (1995) Nucleotide sequence of a 1446 base pair SalI fragment and structure of a novel early gene of Leucania separata nuclear polyhedrosis virus. Arch Virol 140:2283–2291

    Article  CAS  Google Scholar 

  29. Jin T, Qi Y, Qi B, Jin H, Huang Y (1997) Nucleotide sequence of a 5423 base pairs fragment of the LsNPV genome and comparison with the AcNPV genome. Virus Genes 14:201–210

    Article  CAS  Google Scholar 

  30. Thézé J, Lopez-Vaamonde C, Cory JS, Herniou EA (2018) Biodiversity, evolution, and ecological specialization of baculoviruses: a treasure trove for future applied research. Viruses 10:366

    Article  Google Scholar 

  31. Bideshi DK, Renault S, Stasiak K, Federici BA, Bigot Y (2003) Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531–2544

    Article  CAS  Google Scholar 

  32. Volkoff AN, Beliveau C, Rocher J, Hilgarth R, Levasseur A, Duonor-Cerutti M, Cusson M, Webb BA (2002) Evidence for a conserved polydnavirus gene family: ichnovirus homologs of the CsIV repeat element genes. Virology 300:316–331

    Article  CAS  Google Scholar 

  33. Tanaka K, Lapointe R, Barney WE, Makkay AM, Stoltz D, Cusson M, Webb BA (2007) Shared and species-specific features among ichnovirus genomes. Virology 363:26–35

    Article  CAS  Google Scholar 

  34. Theze J, Takatsuka J, Nakai M, Arif B, Herniou EA (2015) Gene acquisition convergence between entomopoxviruses and baculoviruses. Viruses 7:1960–1974. https://doi.org/10.3390/v7041960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakubowska AK, Peters SA, Ziemnicka J, Vlak JM, van Oers MM (2006) Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. J Gen Virol 87:537–551

    Article  CAS  Google Scholar 

  36. Becker D, Knebel-Morsdorf D (1993) Sequence and temporal appearance of the early transcribed baculovirus gene HE65. J Virol 67:5867–5872

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genom 7:98. https://doi.org/10.1186/1471-2164-7-98

    Article  CAS  Google Scholar 

  38. Wu W, Passarelli AL (2012) The Autographa californica M nucleopolyhedrovirus ac79 gene encodes an early gene product with structural similarities to UvrC and intron-encoded endonucleases that is required for efficient budded virus production. J Virol 86:5614–5625. https://doi.org/10.1128/JVI.06252-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ardisson-Araujo DM, Lima RN, Melo FL, Clem RJ, Huang N, Bao SN, Sosa-Gomez DR, Ribeiro BM (2016) Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae. Sci Rep 6:24612. https://doi.org/10.1038/srep24612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Zhu Z, Zhang L, Hou D, Wang M, Arif B, Kou Z, Wang H, Deng F, Hu Z (2016) Genome sequencing and analysis of Catopsilia pomona nucleopolyhedrovirus: a distinct species in group I Alphabaculovirus. PLoS ONE 11(5):e0155134. https://doi.org/10.1371/journal.pone.0155134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harrison RL, Rowley DL, Mowery JD, Bauchan GR, Burand JP (2017) The Operophtera brumata nucleopolyhedrovirus (OpbuNPV) represents an early, divergent lineage within genus Alphabaculovirus. Viruses. https://doi.org/10.3390/v9100307

    Article  PubMed  PubMed Central  Google Scholar 

  42. Santos ER, Oliveira LB, Peterson L, Sosa-Gomez DR, Ribeiro BM, Ardisson-Araujo DMP (2018) The complete genome sequence of the first hesperiid-infecting alphabaculovirus isolated from the leguminous pest Urbanus proteus (Lepidoptera: Hesperiidae). Virus Res 249:76–84. https://doi.org/10.1016/j.virusres.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  43. Ohkawa T, Rowe AR, Volkman LE (2002) Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J Virol 76:12281–12289

    Article  CAS  Google Scholar 

  44. Gandhi KM, Ohkawa T, Welch MD, Volkman LE (2012) Nuclear localization of actin requires AC102 in Autographa californica multiple nucleopolyhedrovirus-infected cells. J Gen Virol 93:1795–1803. https://doi.org/10.1099/vir.0.041848-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ono C, Nakatsukasa T, Nishijima Y, Asano S, Sahara K, Bando H (2007) Construction of the BmNPV T3 bacmid system and its application to the functional analysis of BmNPV he65. J Insect Biotechnol Sericol 76:161–167

    CAS  Google Scholar 

  46. Tang Q, Li G, Yao Q, Chen L, Feng F, Yuan Y, Chen K (2013) Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus. Curr Microbiol 66:22–29. https://doi.org/10.1007/s00284-012-0236-y

    Article  CAS  PubMed  Google Scholar 

  47. Tang Q, Hu Z, Yang Y, Wu H, Qiu L, Chen K, Li G (2015) Overexpression of Bm65 correlates with reduced susceptibility to inactivation by UV light. J Invertebr Pathol 127:87–92. https://doi.org/10.1016/j.jip.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  48. Tang Q, Wu P, Hu Z, Yang Y, Qiu L, Liu H, Zhu S, Guo Z, Xia H, Chen K, Li G (2017) Evidence for the role of BmNPV Bm65 protein in the repair of ultraviolet-induced DNA damage. J Invertebr Pathol 149:82–86. https://doi.org/10.1016/j.jip.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  49. Mak AN, Lambert AR, Stoddard BL (2010) Folding, DNA recognition, and function of GIY-YIG endonucleases: crystal structures of R.Eco29kI. Structure 18:1321–1331. https://doi.org/10.1016/j.str.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Croizier G, Croizier L, Argaud O, Poudevigne D (1994) Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proc Natl Acad Sci USA 91:48–52

    Article  CAS  Google Scholar 

  51. Lu A, Miller LK (1995) Differential requirements for baculovirus late expression factor genes in two cell lines. J Virol 69:6265–6272

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen CJ, Thiem SM (1997) Differential infectivity of two Autographa californica nucleopolyhedrovirus mutants on three permissive cell lines is the result of lef-7 deletion. Virology 227:88–95

    Article  CAS  Google Scholar 

  53. Chen CJ, Quentin ME, Brennan LA, Kukel C, Thiem SM (1998) Lymantria dispar nucleopolyhedrovirus hrf-1 expands the larval host range of Autographa californica nucleopolyhedrovirus. J Virol 72:2526–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu A, Miller LK (1996) Species-specific effects of the hcf-1 gene on baculovirus virulence. J Virol 70:5123–5130

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Prikhod’ko EA, Lu A, Wilson JA, Miller LK (1999) In vivo and in vitro analysis of baculovirus ie-2 mutants. J Virol 73:2460–2468

    PubMed  PubMed Central  Google Scholar 

  56. Shirata N, Ikeda M, Kobayashi M (2010) Identification of a Hyphantria cunea nucleopolyhedrovirus (NPV) gene that is involved in global protein synthesis shutdown and restricted Bombyx mori NPV multiplication in a B. mori cell line. Virology 398:149–157. https://doi.org/10.1016/j.virol.2009.11.049

    Article  CAS  PubMed  Google Scholar 

  57. Argaud O, Croizier L, Lopez-Ferber M, Croizier G (1998) Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol 79:931–935

    Article  CAS  Google Scholar 

  58. Bideshi DK, Federici BA (2000) The Trichoplusia ni granulovirus helicase is unable to support replication of Autographa californica multicapsid nucleopolyhedrovirus in cells and larvae of T. ni. J Gen Virol 81:1593–1599

    Article  CAS  Google Scholar 

  59. Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254:1388–1390

    Article  CAS  Google Scholar 

  60. Griffiths CM, Barnett AL, Ayres MD, Windass J, King LA, Possee RD (1999) In vitro host range of Autographa californica nucleopolyhedrovirus recombinants lacking functional p35, iap1 or iap2. J Gen Virol 80:1055–1066

    Article  CAS  Google Scholar 

  61. Zhang P, Yang K, Dai X, Pang Y, Su D (2002) Infection of wild-type Autographa californica multicapsid nucleopolyhedrovirus induces in vivo apoptosis of Spodoptera litura larvae. J Gen Virol 83:3003–3011

    Article  CAS  Google Scholar 

  62. Liu B, Becnel JJ, Zhang Y, Zhou L (2011) Induction of reaper ortholog mx in mosquito midgut cells following baculovirus infection. Cell Death Differ 18:1337–1345. https://doi.org/10.1038/cdd.2011.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clem RJ (2015) Viral IAPs, then and now. Semin Cell Dev Biol 39:72–79. https://doi.org/10.1016/j.semcdb.2015.01.011 pii]

    Article  CAS  PubMed  Google Scholar 

  64. Du Q, Lehavi D, Faktor O, Qi Y, Chejanovsky N (1999) Isolation of an apoptosis suppressor gene of the Spodoptera littoralis nucleopolyhedrovirus. J Virol 73:1278–1285

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pallavi Thapa, Daniel Barakh, and Anita Ghosh (USDA-ARS, Beltsille, MD) for assistance with dideoxy sequencing, and Doug Baldwin (AAFC) for assistance with assembly of 454 sequence reads and initial annotation of the genome. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: RLH, JDM, GRB, DAT, MAE. Performed the experiments: RLH, JDM, GRB, MAE. Analyzed the data: RLH. Wrote the paper: RLH, JDM, GRB, DAT, MAE.

Corresponding author

Correspondence to Robert L. Harrison.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The research described in this paper does not use any human or animal subjects.

Additional information

Edited by A. Lorena Passarelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1. Supplementary Table 1. Taxa used in core gene phylogeny. (XLSX 14 KB)

11262_2018_1615_MOESM2_ESM.pdf

Supplementary material 2. Supplementary Table 2. MyunNPV-KY310 open reading frames (ORFs) and repeat regions. (PDF 169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, R.L., Mowery, J.D., Bauchan, G.R. et al. The complete genome sequence of a second alphabaculovirus from the true armyworm, Mythimna unipuncta: implications for baculovirus phylogeny and host specificity. Virus Genes 55, 104–116 (2019). https://doi.org/10.1007/s11262-018-1615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1615-7

Keywords

Navigation