Skip to main content

Advertisement

Log in

Evolutionary liberties of the Abutilon mosaic virus cluster

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Two new strains of Abutilon mosaic virus (AbMV; Geminiviridae) from Germany (Stuttgart) and France (Paris) have been characterized by circomics, direct pyrosequencing of rolling circle amplification (RCA) products, as well as conventional cloning and Sanger sequencing. RCA combined with an analysis of restriction fragment length polymorphisms confirmed the completeness of the sequence determination and a close relationship of both isolates for DNA A with 99 % nucleotide sequence identity. Phylogenetic tree reconstruction supported their clustering with other AbMV strains in a clade with Middle American begomoviruses, whereas South American begomoviruses that infect Abutilon or Sida micrantha are less closely related. Comparing the coat protein (CP) genes of the AbMV cluster, with those of related Middle and South American begomoviruses revealed a remarkable overrepresentation for non-synonymous nucleotide exchanges for certain amino acid positions in the AbMV cluster. Projection of these positions to a structural model of the African cassava mosaic virus CP yielded a non-random distribution at the periphery and, most importantly, highlighted those amino acids that had been identified in whitefly-transmission experiments before. These results establish the basis for an analysis of the evolutionary liberty of certain amino acid positions of the CP, and their impact on the deciphering of insect transmission determinants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. zur Jeske, H. de Hausen, E.-M. Villiers (eds.), Torque Teno virus: the still elusive human pathogens (Springer, Berlin, 2009), pp. 185–226

    Google Scholar 

  2. E. Regel, in Gartenflora, ed. by E. Regel (Ferdinand Enke, Stuttgart, 1868), p. 375

    Google Scholar 

  3. C. Wege, R.D. Gotthardt, T. Frischmuth, H. Jeske, Arch. Virol. 145, 2217–2225 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Jeske H., AAB Descr Plant Viruses No. 373, 2000

  5. E. Regel, in Gartenflora, ed. by E. Regel (Ferdinand Enke, Stuttgart, 1875), pp. 116–117

    Google Scholar 

  6. E. Regel, in Gartenflora, ed. by E. Regel (Ferdinand Enke, Stuttgart, 1871), p. 310

    Google Scholar 

  7. H. Lindemuth, Verh. Bot. Ver. Prov. Brandenbg. 14, 32–37 (1872)

    Google Scholar 

  8. W. Hertzsch, Züchter 2, 195–199 (1930)

    Google Scholar 

  9. H. Lindemuth, Landwirthschaftliche Jahrb. H. 36, 807–861 (1907)

    Google Scholar 

  10. H. Lindemuth, Landwirthschaftliche Jahrb. H. 6, 887–939 (1878)

    Google Scholar 

  11. H. Lindemuth, Vegetative Bastarderzeugung durch Impfung (Hempel & Parey, Berlin, 1878)

    Google Scholar 

  12. J.Y. Keur, Phytopathology 24, 12–13 (1934)

    Google Scholar 

  13. J.Y. Keur, Bull. Torr. Bot. Club 61, 53–70 (1934)

    Article  Google Scholar 

  14. W. Hertzsch, Z. Bot. 20, 65–80 (1928)

    Google Scholar 

  15. A.S. Costa, Annu. Rev. Phytopathol. 16, 429–449 (1976)

    Article  Google Scholar 

  16. A.S. Costa, Phytopathol. Z. 24, 97–112 (1955)

    Google Scholar 

  17. E. Flores, K. Silberschmidt, Phytopathol. Z. 60, 181–195 (1967)

    Article  Google Scholar 

  18. E. Flores, K. Silberschmidt, Phytopathology 53, 238 (1963)

    Google Scholar 

  19. K. Silberschmidt, E. Flores, L.R. Tommasi, Phytopathol. Z. 30, 387–414 (1957)

    Google Scholar 

  20. K. Silberschmidt, L.R. Tommasi, Anais. Acad. Brasil. Cienc. 27, 195–214 (1953)

    Google Scholar 

  21. A. Orlando, K. Silberschmidt, Arqu. Inst. Biol. Sao Paulo 17, 1–36 (1946)

    Google Scholar 

  22. A. Orlando, K. Silberschmidt, O Biol. XI, 139–140 (1945)

    Google Scholar 

  23. K. Silberschmidt, Arqu. Inst. Biol. Sao Paulo 16, 49–64 (1945)

    Google Scholar 

  24. H. Czosnek, M. Ghanim, S. Morin, G. Rubinstein, V. Fridman, M. Zeidan, Adv. Virus Res. 57, 291–322 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. H. Jeske, D. Gotthardt, S. Kober, J. Virol. Methods 163, 301–308 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. J. Jovel, W. Preiß, H. Jeske, Virus Res. 130, 63–70 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. J. Jovel, G. Reski, D. Rothenstein, M. Ringel, T. Frischmuth, H. Jeske, Arch. Virol. 149, 829–841 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. P.S. Wyant, S. Strohmeier, B. Schäfer, B. Krenz, I.P. Assuncao, G.S. Lima, H. Jeske, Virology 427, 151–157 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. P.S. Wyant, D. Gotthardt, B. Schäfer, B. Krenz, H. Jeske, Arch. Virol. 156, 347–352 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. T. Paprotka, V. Metzler, H. Jeske, Arch. Virol. 155, 813–816 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. M. Höhnle, P. Höfer, I.D. Bedford, R.W. Briddon, P.G. Markham, T. Frischmuth, Virology 290, 164–171 (2001)

    Article  PubMed  Google Scholar 

  32. P. Höfer, I.D. Bedford, P.G. Markham, H. Jeske, T. Frischmuth, Virology 236, 288–295 (1997)

    Article  PubMed  Google Scholar 

  33. Z.C. Wu, J.S. Hu, J.E. Polston, D.E. Ullman, E. Hiebert, Phytopathology 86, 608–613 (1996)

    Article  CAS  Google Scholar 

  34. S. Morin, M. Ghanim, I. Sobol, H. Czosnek, Virology 276, 404–416 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. T. Frischmuth, G. Zimmat, H. Jeske, Virology 178, 461–468 (1990)

    Article  CAS  PubMed  Google Scholar 

  36. H. Jeske, D. Menzel, G. Werz, Phytopathol. Z. 89, 289–295 (1977)

    Article  Google Scholar 

  37. A.A. Donnell, H.E. Ballard Jr, P.D. Cantino, Syst. Bot. 37, 712–722 (2012)

    Article  Google Scholar 

  38. S. Unseld, M. Ringel, P. Höfer, M. Höhnle, H. Jeske, I.D. Bedford, P.G. Markham, T. Frischmuth, Arch. Virol. 145, 1449–1454 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. S. Unseld, M. Ringel, A. Konrad, S. Lauster, T. Frischmuth, Virology 274, 179–188 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. T. Frischmuth, M. Engel, S. Lauster, H. Jeske, J. Gen. Virol. 78, 2675–2682 (1997)

    CAS  PubMed  Google Scholar 

  41. P. Höfer, M. Engel, H. Jeske, T. Frischmuth, J. Gen. Virol. 78, 1785–1790 (1997)

    PubMed  Google Scholar 

  42. D. Pohl, C. Wege, J. Gen. Virol. 88, 1034–1040 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. B. Krenz, C. Wege, H. Jeske, J. Virol. Methods 169, 129–137 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. R.W. Briddon, B.L. Patil, B. Bagewadi, M.S. Nawaz-ul-Rehman, C.M. Fauquet, BMC Evol. Biol. 10, 97 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  45. S.W. Qin, B.M. Ward, S.G. Lazarowitz, J. Virol. 72, 9247–9256 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  46. D. Haible, S. Kober, H. Jeske, J. Virol. Methods 135, 9–16 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. H. Jeske, S. Kober, B. Schäfer, S. Strohmeier, Virus Genes 49, 312–324 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. T. Hall, GERF Bull. Biosci. 2, 60–61 (2011)

    Google Scholar 

  49. R.R. Stocsits, I.L. Hofacker, C. Fried, P.F. Stadler, BMC Bioinform. 6, 160 (2005)

    Article  Google Scholar 

  50. B.G. Hall, Mol. Biol. Evol. 30, 1229–1235 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. S.L. Kosakovsky Pond, S.D.W. Frost, S.V. Muse, Bioinformatics 21, 676–679 (2005)

    Article  Google Scholar 

  52. B. Böttcher, S. Unseld, H. Ceulemans, R.B. Russell, H. Jeske, J. Virol. 78, 6758–6765 (2004)

    Article  PubMed Central  PubMed  Google Scholar 

  53. S.L. Kosakovsky Pond, S.D.W. Frost, Mol. Biol. Evol. 22, 1208–1222 (2005)

    Article  PubMed  Google Scholar 

  54. E. Noris, A.M. Vaira, P. Caciagli, V. Masenga, B. Gronenborn, G.P. Accotto, J. Virol. 72, 10050–10057 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  55. A. Kheyr-Pour, K. Bananej, G.A. Dafalla, P. Caciagli, E. Noris, A. Ahoonmanesh, H. Lecoq, B. Gronenborn, Phytopathology 90, 629–635 (2000)

    Article  CAS  PubMed  Google Scholar 

  56. S. Liu, I.D. Bedford, R.W. Briddon, P.G. Markham, J. Gen. Virol. 78, 1791–1794 (1997)

    CAS  PubMed  Google Scholar 

  57. I. Grigoras, T. Timchenko, L. Katul, A. Grande-Perez, H.J. Vetten, B. Gronenborn, J. Virol. 83, 10778–10787 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. I. Grigoras, T. Timchenko, A. Grande-Perez, L. Katul, H.J. Vetten, B. Gronenborn, J. Virol. 84, 9105–9117 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. B.D. Harrison, M.M. Swanson, D. Fargette, Physiol. Mol. Plant Pathol. 60, 257–271 (2002)

    Article  CAS  Google Scholar 

  60. J. Schubert, A. Habekuss, K. Kazmaier, H. Jeske, Virus Res. 127, 61–70 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. C. Wege, Drs. P. Wyant and K. Hipp for critical comments on the manuscript and providing leaf samples, to B. Schäfer and S. Kober for excellent technical assistance, and to D. Gotthardt for taking care of the plants. The advices in botanical taxonomy of Profs. P. D. Cantino, Ohio, and J. G. Rohwer, Hamburg, were very helpful. This work was supported by a trilateral ERA-PG/BMBF Project (BMBF 0313986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Jeske.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2014_1125_MOESM1_ESM.pptx

Supplementary material 1 Spreadsheet calculations to determine the fit between expected and observed fragments of the gels shown in Fig. 1 b, c, d, respectively. The logarithmic values of the molecular weights are plotted against migration distances transformed to Rf value probits as described previously [28].(PPTX 77 kb)

11262_2014_1125_MOESM2_ESM.xlsx

Supplementary material 2 Suppl. Table 1: Pairwise comparison of nucleotide sequence identities (SI) for AbMV DNA A and DNA B components after aligning using codaln algorithm. The values for AbMV D(S) and F(P) are highlighted.Suppl. Table 2: List of DNA A sequences compared to those of AbMV with accession numbers, long names and countries of collection as far as they can be retrieved from the data base entries.Suppl. Table 3: List of DNA B sequences compared to those of AbMV with accession numbers, long names and countries of collection as far as they can be retrieved from the data base entries.Suppl. Table 4: List of DNA A sequences of South American Abutilon-infecting and Sida micrantha mosaic viruses used for CP ORF comparisons, with accession numbers, long names and countries of collection as far as they can be retrieved from the data base entries.(XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Strohmeier, S., Krenz, B. et al. Evolutionary liberties of the Abutilon mosaic virus cluster. Virus Genes 50, 63–70 (2015). https://doi.org/10.1007/s11262-014-1125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1125-1

Keywords

Navigation