Skip to main content
Log in

Stem cell factor supports migration in canine mesenchymal stem cells

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25–30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H (2015) Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell J 16(4):456–465. https://doi.org/10.22074/cellj.2015.491

    PubMed  PubMed Central  Google Scholar 

  • Almalki SG, Agrawal DK (2016) Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res Ther 7(1):129. https://doi.org/10.1186/s13287-016-0393-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubin JE, Liu F, Candeliere GA (2002) PCR methods for studying stem cells and progenitors. Methods Mol Biol 185:403–415

    CAS  PubMed  Google Scholar 

  • Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T (2016) Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp (Warsz) 64(6):443–454. https://doi.org/10.1007/s00005-016-0394-x

    Article  CAS  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253(1–2):269–285

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Shakibaei M (2009) Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 131(2):251–266. https://doi.org/10.1007/s00418-008-0524-6

    Article  CAS  PubMed  Google Scholar 

  • De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever JD, Waele M, Van Riet I (2007) Migration of culture-expanded human mesenchymal stem cells hrough bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92(4): 440–449; https://doi.org/10.3324/haematol.10475

    Article  PubMed  Google Scholar 

  • Deruyina E, Quigley J (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Fermín ML, Gaitán S, Fragío C, Léon LG, Ostronoff LK, Kremmer E, Kolb HJ, Tejero C (2004) Canine long-term bone marrow culture neutrophil production and functionality. Acta Haematol 111(4):196–204

    Article  PubMed  Google Scholar 

  • Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng Part B Rev 23(6):515–528. https://doi.org/10.1089/ten.TEB.2016.0365

    Article  CAS  PubMed  Google Scholar 

  • Guercio A, Di Bella S, Casella S, Di Marco P, Russo C, Piccione G (2013) Canine mesenchymal stem cells (MSCs): characterization in relation to donor age and adipose tissue-harvesting site. Cell Biol Int 37(8):789–798. https://doi.org/10.1002/cbin.10090

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Jang G, Bae BK, Han SM, Koh YR, Ahn JO, Jung WS, Kang SK, Ra JC, Lee HW, Youn HY (2014) Effect of ectopic OCT4 expression on canine adipose tissue-derived mesenchymal stem cell proliferation. Cell Biol Int 38(10):1163–1173. https://doi.org/10.1002/cbin.10295

    Article  CAS  PubMed  Google Scholar 

  • Harper E, Bloch KJ (1971) The zymogen of tadpole collagenase. Biochemistry 10(16):3055–3041

    Article  Google Scholar 

  • Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, Lam PY (2009) Matrix metalloproteinase 1 is necesary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27(6):1366–1375

  • Hoffman AM, Dow SW (2016) Concise review: stem cell trials using companion animal disease models. Stem cells 34(7):1709–1729. https://doi.org/10.1002/stem.2377

    Article  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Marquez LA, Nabholtz JM, Cabuhat ML, Montaño J, Chang H, Rozmus J, Russell JA, Edwards DR, Turner AR (1999) Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34 + cells and their transmigration through reconstituted basement membrane. Blood 93(10):3379–3390

    CAS  PubMed  Google Scholar 

  • Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML (2000) Differential MMP and TIMP production by human marrow and peripheral blood CD34 + cells in response to chemokines. Exp Hematol 28(11):1274–1285

    Article  CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570. https://doi.org/10.4252/wjsc.v6.i5.552

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):901–910

    Article  Google Scholar 

  • León LG, Ostronoff LK, Fermín ML, Fragío C, Kremmer E, Tejero C (2005) In vitro generation of mature neutrophils from canine Lin- bone marrow cells. Vet Immunol Inmunopathol 107(1–2):41–50

    Article  Google Scholar 

  • Marx C, Silveira MD, Beyer Nardi N (2015) Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev 24(7):803–813. https://doi.org/10.1089/scd.2014.0407

    Article  PubMed  Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48(12):3464–3474

    Article  PubMed  Google Scholar 

  • Neupane M, Chang C, Kiupel M, Yuzbasiyan-Gurkan V (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 14(6):1007–1015. https://doi.org/10.1089/tea.2007.0207

    Article  CAS  PubMed  Google Scholar 

  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostronoff LK, Kremmer E, Fermín ML, Fragío C, Mysliwietz J, Kolb HJ, Tejero C (2008) Canine stem cell factor augments expression of matrix metalloproteinase-9 by CD34 cells. Cytotherapy 10(2):193–102. https://doi.org/10.1080/14653240701827407

    Article  CAS  PubMed  Google Scholar 

  • Quintanilha LF, Takami T, Hirose Y, Fujisawa K, Murata Y, Yamamoto N, Goldenberg RC, Terai S, Sakaida I (2014) Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol Res 44(10):E206–E217. https://doi.org/10.1111/hepr.12204

    Article  CAS  PubMed  Google Scholar 

  • Reich CM, Raabe O, Wenisch S, Bridger P, Kramer M, Arnhold S (2012) Isolation, culture and chondrogenic differentiation of canine adipose tissue and bone marrow-derived mesenchymal stem cells–a comparative study. Vet Res Commun 36(2):139–148. https://doi.org/10.1007/s11259-012-9523-0

    Article  PubMed  Google Scholar 

  • Reid J, Nolan AM, Hughes JML, Lascelles D, Pawson P, Scott EM (2007) Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score. Anim Welf 16(S):97–104

    CAS  Google Scholar 

  • Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109(9):4055–4063

    Article  CAS  PubMed  Google Scholar 

  • Roth V (2006) http://www.doubling-time.com/compute.php

  • Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904

    Article  PubMed  Google Scholar 

  • Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:130763. https://doi.org/10.1155/2013/130763

    Article  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behabior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivanović D, Jauković A, Popović B, Krstić J, Mojsilović S, Okić-Djordjević I, Kukolj T, Obradović H, Santibanez JF, Bugarski D (2015) Mesenchymal stem cells of different origin: comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sci 141:61–73. https://doi.org/10.1016/j.lfs.2015.09.019

    Article  PubMed  Google Scholar 

  • Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19(3):279–289. https://doi.org/10.3727/096368909X481764

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Cao W (2014) Treatment of osteoarthritis with mesenchymal stem cells. Sci China Life Sci 57(6):586–595. https://doi.org/10.1007/s11427-014-4673-7

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19–28. https://doi.org/10.1186/1756-8722-5-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Watanabe N, Nagamura-Inoue T, Igura K, Nagayama H, Tojo A, Tanosaki R, Takaue Y, Okamoto S, Takahashi TA (2003) Ex vivo manipulation of umbilical cord blood-derived hematopoietic stem/progenitor cells with recombinant human stem cell factor can up-regulate levels of homing-essential molecules to increase their transmigratory potential. Exp Hematol 31(12):1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Shi W, Tai W, Liu F (2012) The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived mesenchymal stem cells. Cell Tissue Res 350(2):277–287. https://doi.org/10.1007/s00441-012-1453-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very thankful to Dra. Carmen Fajardo for her scientific assistance. We thank Flow Cytometry, Genomics and Proteomics UCM facilities, for their technical support. Leticia G. León care Marie Curie grant. Authors would like to thank Elisabeth Salva for their technical assistance. Some studies reported in this manuscript were supported by a grant from the Deutsche José Carreras Leukämie Stiftung e.V. (R01/R13.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción Tejero.

Ethics declarations

Disclosure of interest

The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.

Additional information

Highlights

Standard phenotype from bone marrow BMMSCs and adipose tissue ASCs was confirmed.

We verified OCT4, SOX9, RUNX2, and PPARG genes expression in MSC from both origins.

ASCs constitutively express MMP-2 and MMP-9, being up-regulated by SCF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enciso, N., Ostronoff, L.L.K., Mejías, G. et al. Stem cell factor supports migration in canine mesenchymal stem cells. Vet Res Commun 42, 29–38 (2018). https://doi.org/10.1007/s11259-017-9705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-017-9705-x

Keywords

Navigation