Plant Ecology

, Volume 217, Issue 11, pp 1359–1367 | Cite as

Root production in contrasting ecosystems: the impact of rhizotron sampling frequency

  • Vasiliki G. BalogianniEmail author
  • Gesche Blume-Werry
  • Scott D. Wilson


Despite their critical role in every terrestrial ecosystem, fine root production and mortality have not been widely compared among systems due to the practical difficulties of belowground research. We examined fine root production and mortality among five contrasting sites: native and invaded grassland in eastern Montana, USA, aspen forest in southern Saskatchewan, Canada, and birch forest and tundra in northern Sweden. Additionally, we investigated the importance of minirhizotron sampling interval on measures of root production and mortality by comparing measures produced from 1-, 7-, 14-, and 21-day sample intervals. Root length and mortality varied significantly among sites, with invaded grassland having the greatest root length (>2 × than any other site) and significantly greater root mortality than native grassland (54 %). In contrast, there were no significant differences in root production among the sites. Sample interval had no significant influence on root production or mortality. Minirhizotron sampling intervals up to 3 weeks did not underestimate the measures of root production and mortality in comparison to measures derived from shorter sampling intervals, regardless of the site studied. The results suggest that 3 weeks can be an accurate and efficient sample interval when studying root production and mortality with minirhizotrons.


Arctic Minirhizotrons Mortality Prairie Sample interval Tundra 



We thank D. Sandbeck and S. Träger for practical help, Medicine Lake National Wildlife Refuge and the Abisko Scientific Research Station for access and logistical support, reviewers for helpful suggestions, and the Natural Sciences and Engineering Research Council of Canada for funding.


  1. Aerts R, Berendse F, Klerk NM, Bakker C (1989) Root production and root turnover in two dominant species of wet heathlands. Oecologia 81:374–378. doi: 10.1007/BF00377087 CrossRefGoogle Scholar
  2. Aerts R, Bakker C, De Caluwe H (1992) Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem. Biogeochemistry 15:175–190CrossRefGoogle Scholar
  3. Balogianni VG, Wilson SD, Vaness BM, MacDougall AS, Pinno BD (2014) Different root and shoot responses to mowing and fertility in native and invaded grassland. Rangel Ecol Manag 67:39–45. doi: 10.2111/REM-D-13-00080.1
  4. Balogianni VG, Wilson SD, Farrell RE, MacDougall AS (2015) Rapid root decomposition decouples root length from increased soil C following grassland invasion. Ecosystems 18:1307–1318. doi: 10.1007/s10021-015-9900-y CrossRefGoogle Scholar
  5. Blume-Werry G, Wilson SD, Kreyling J, Milbau A (2016) The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209:978–986. doi: 10.1111/nph.13655 CrossRefPubMedGoogle Scholar
  6. Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399. doi: 10.1007/s004420000455 CrossRefGoogle Scholar
  7. Cahn MD, Zobel RW, Bouldin DR (1989) Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize. Plant Soil 119:271–279. doi: 10.1007/BF02370419 CrossRefGoogle Scholar
  8. Chen HY, Brassard BW (2013) Intrinsic and extrinsic controls of fine root life span. Crit Rev Plant Sci 32:151–161. doi: 10.1080/07352689.2012.734742 CrossRefGoogle Scholar
  9. Dubach M, Russelle MP (1995) Reducing the cost of estimating root turnover with horizontally installed minirhizotrons. Agron J 87:258–263. doi: 10.2134/agronj1995.00021962008700020019x CrossRefGoogle Scholar
  10. Guo LB, Wang M, Gifford RM (2007) The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant Soil 299:251–262. doi: 10.1007/s11104-007-9381-7 CrossRefGoogle Scholar
  11. Hendrick RL, Pregitzer KS (1996) Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil 185:293–304. doi: 10.1007/BF02257535 CrossRefGoogle Scholar
  12. Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi: 10.1111/j.1365-2745.2005.01067.x CrossRefGoogle Scholar
  13. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  14. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289. doi: 10.1016/S0098-8472(01)00077-6 CrossRefPubMedGoogle Scholar
  15. Joslin JD, Wolfe MH (1999) Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63:218–221. doi: 10.2136/sssaj1999.03615995006300010031x CrossRefGoogle Scholar
  16. King JS, Pregitzer KS, Zak DR (1999) Clonal variation in above-and below-ground growth responses of Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant Soil 217:119–130. doi: 10.1023/A:1004560311563 CrossRefGoogle Scholar
  17. Macdougall AS, Wilson SD (2011) The invasive grass Agropyron cristatum doubles belowground productivity but not soil carbon. Ecology 92:657–664. doi: 10.1890/10-0631.1 CrossRefPubMedGoogle Scholar
  18. Majdi H, Pregitzer K, Moren AS, Nylund JE, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8. doi: 10.1007/s11104-005-3104-8 CrossRefGoogle Scholar
  19. Mariotte P, Vandenberghe C, Kardol P, Hagedorn F, Buttler A (2013) Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J Ecol 101:763–773. doi: 10.1111/1365-2745.12064 CrossRefGoogle Scholar
  20. McCormack ML, Gaines KP, Pastore M, Eissenstat DM (2015) Early season root production in relation to leaf production among six diverse temperate tree species. Plant Soil 389:121–129. doi: 10.1007/s11104-014-2347-7 CrossRefGoogle Scholar
  21. Milchunas DG, Lauenroth WK (1992) Carbon dynamics and estimates of primary production by harvest, ^(14) C dilution, and ^(14) C turnover. Ecology 1:593–607. doi: 10.2307/1940765 CrossRefGoogle Scholar
  22. Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biol 12:84–96. doi: 10.1111/j.1365-2486.2005.001043.x CrossRefGoogle Scholar
  23. Pärtel M, Wilson SD (2002) Root dynamics and spatial pattern in prairie and forest. Ecology 83:1199–1203. doi: 10.2307/3071934 CrossRefGoogle Scholar
  24. Peek MS (2007) Explaining variation in fine root life span. In: Esser K (ed) Progress in Botany. Springer, Berlin Heidelberg, pp 382–398CrossRefGoogle Scholar
  25. Pinno BD, Wilson SD (2013) Fine root response to soil resource heterogeneity differs between grassland and forest. Plant Ecol 214:821–829. doi: 10.1007/s11258-013-0210-1 CrossRefGoogle Scholar
  26. Reich PB, Peterson DW, Wedin DA, Wrage K (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:1703–1719. doi: 10.2307/2679812 Google Scholar
  27. Sloan VL, Fletcher BJ, Phoenix GK (2016) Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J Ecol 104:239–248. doi: 10.1111/1365-2745.12506 CrossRefGoogle Scholar
  28. Steinaker DF, Wilson SD (2005) Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology 86:2825–2833. doi: 10.1890/04-0893 CrossRefGoogle Scholar
  29. Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Global Change Biol 16:2241–2251. doi: 10.1111/j.1365-2486.2009.02065.x CrossRefGoogle Scholar
  30. Stevens GN, Jones RH, Mitchell RJ (2002) Rapid fine root disappearance in a pine woodland: a substantial carbon flux. Can J Forest Res 32:2225–2230. doi: 10.1139/x02-135 CrossRefGoogle Scholar
  31. Stewart AM, Frank DA (2008) Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia 157:453–458. doi: 10.1007/s00442-008-1088-9 CrossRefPubMedGoogle Scholar
  32. Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Can J Forest Res 32:1692–1697. doi: 10.1139/x02-123 CrossRefGoogle Scholar
  33. Tingey DT, Phillips DL, Johnson MG (2003) Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species. New Phytol 157:155–161. doi: 10.1046/j.1469-8137.2003.00653.x CrossRefGoogle Scholar
  34. Van der Krift TAJ, Berendse F (2002) Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16:198–203. doi: 10.1046/j.1365-2435.2002.00611.x CrossRefGoogle Scholar
  35. Veen GF, Sundqvist MK, Metcalfe D, Wilson SD (2015) Above-ground and below-ground plant responses to fertilization in two subarctic ecosystems. Arct Antarct Alp Res 47:693–702CrossRefGoogle Scholar
  36. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219. doi: 10.1007/BF00017088 CrossRefGoogle Scholar
  37. West JB, Espeleta JF, Donovan LA (2004) Fine root production and turnover across a complex edaphic gradient of a Pinus palustris-Aristida stricta savanna ecosystem. Forest Ecol Manag 189:397–406. doi: 10.1016/j.foreco.2003.09.009 CrossRefGoogle Scholar
  38. Zobel R (2003) Fine roots–discarding flawed assumptions. New Phytol 160:276–279. doi: 10.1046/j.1469-8137.2003.0089 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de EcologiaUniversidade Federal do Rio Grande do SulPorto Alegre RioBrazil
  2. 2.Department of Ecology and Environmental Science, Climate Impacts Research CentreUmeå UniversityAbiskoSweden
  3. 3.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations