Skip to main content

Advertisement

Log in

Vascular epiphyte assemblages in a Brazilian Atlantic Forest fragment: investigating the effect of host tree features

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

This study investigates the relative importance of dispersal- and niche-related mechanisms structuring the assemblages of vascular epiphytes in a 10-ha secondary Atlantic Forest patch in São Paulo city, Brazil. We tested for the effect of characteristics of host trees (species, height, trunk diameter, presence of lianas, and distance to a near stream) and of space on epiphyte abundance, species richness, and species composition of vascular epiphytes. Inside a 0.2-ha plot, all 86 trees with diameter at breast height >13 cm (27 species) were recorded, as well as all epiphytes larger than 15 cm in length on those trees (380 individuals, 22 species). Twenty-eight trees (32.6 %) did not carry epiphytes. On individual trees, tree species showed a significant effect on epiphyte abundance, richness, and species composition. The bark-shedding Piptadenia gonoacantha carried less epiphytes than other tree species. Distance to the stream showed effects on abundance and species composition, with lower abundance farther from the stream. Tree height had a positive effect on abundance, richness, and species composition, but trunk diameter had none, supporting the importance of vertical stratification in controlling epiphyte richness. Variation partitioning analyses showed little or no effect of “pure space” on abundance, richness, and species composition (explaining 6.7, 4.5, and 0.7 % of variation, respectively), as compared to environmental effects (26, 30, and 14.5 %), generally supporting a higher importance of niche-based processes in structuring epiphytic assemblages on host trees in the plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D et al (2013) Soil resources and topography shape local tree community structure in tropical forests. Proc Royal Soc B 280(1753):20122532

    Article  Google Scholar 

  • Barbosa M, Becker D, Cunha S, Droste A, Schmitt J (2015) Vascular epiphytes of the Atlantic Forest in the Sinos River basin, state of Rio Grande do Sul, Brazil: richness, floristic composition and community structure. Braz J Biol 75(2):25–35

    Article  PubMed  CAS  Google Scholar 

  • Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152(2):145–156

    Article  Google Scholar 

  • Bataghin FA, Barros Fd, Pires JSR (2010) Distribuição da comunidade de epífitas vasculares em sítios sob diferentes graus de perturbação na Floresta Nacional de Ipanema, São Paulo, Brasil. Braz J Bot 33(3):501–512

    Article  Google Scholar 

  • Benavides AM, Vasco A, Duque AJ, Duivenvoorden JF (2011) Association of vascular epiphytes with landscape units and phorophytes in humid lowland forests of Colombian Amazonia. J Trop Ecol 27:223–237

    Article  Google Scholar 

  • Benzing DH (1989) The evolution of epiphytism. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin, pp 15–41

    Chapter  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Blanchet F, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecol 89(9):2623–2632

    Article  Google Scholar 

  • Bøgh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:25–34

    Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Borgo M, Silva SM (2003) Epífitos vasculares em fragmentos de floresta ombrófila mista, Curitiba, Paraná, Brasil. Revista Brasileira de Botânica 26(3):391–401

    Google Scholar 

  • Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Soltis P, Stevens P (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Chang LW, Zeleny` D, Li CF, Chiu ST, Hsieh CF (2013) Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecol 94(10):2145–2151

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366(1576):2351–2363

    Article  Google Scholar 

  • Dettke GA, Orfrini AC, Milaneze-Gutierre MA (2008) Composição florística e distribuição de epífitas vasculares em um remanescente alterado de Floresta Estacional Semidecidual no Paraná, Brasil. Rodriguésia 59(4):859–872

    Google Scholar 

  • Dias-Terceiro RG, Peixoto GM, Gomes VS, Menezes MC, Neco EC, Pessoa TSA, Fabricante JR, Albuquerque MB (2015) Edge effect on vascular epiphytic composition in a fragment of Atlantic Forest in northeastern Brazil. Acta Bot Brasilica 29(2):270–273

    Article  Google Scholar 

  • Dislich R, Mantovani W (1998) A flora de epífitas vasculares da Reserva da Cidade Universitária “Armando de Salles Oliveira” (São Paulo, Brasil). Boletim de Botânica da Universidade de São Paulo 17:61–83

    Article  Google Scholar 

  • Dislich R, Cersósimo L, Mantovani W (2001) Análise da estrutura de fragmentos florestais no Planalto Paulistano—SP. Revista Brasileira de Botânica 24(3):321–332

    Google Scholar 

  • Flores-Palacios A (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33(2):323–330

    Article  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233

    Article  Google Scholar 

  • Gorresio-Roizman L (1993) Fitossociologia e dinâmica do banco de sementes de populações arbóreas de floresta secundária em São Paulo, SP. MSc Dissertation, Universidade de São Paulo, São Paulo

  • Hirata A, Kamijo T, Saito S (2009) Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecol 201(1):247–254

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32) (monographs in population biology). Princeton University Press, Princeton

    Google Scholar 

  • Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155(3):593–604

    Article  PubMed  Google Scholar 

  • Kersten RA, Silva SM (2002) Florística e estrutura do componente epifítico vascular em floresta ombrófila mista aluvial do rio Barigüi, Paraná, Brasil. Revista Brasileira de Botânica 25(3):259–267

    Google Scholar 

  • Knobel M (1995) Aspectos da regeneração natural do componente arbóreo-arbustivo de trecho da floresta da Reserva Biológica do Instituto de Botânica em São Paulo, SP. MSc Dissertation, Universidade de São Paulo, São Paulo

  • Köster N, Nieder J, Barthlott W (2011) Effect of host tree traits on epiphyte diversity in natural and anthropogenic habitats in Ecuador. Biotropica 43(6):685–694

    Article  Google Scholar 

  • Krömer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol 189(2):261–278

    Article  Google Scholar 

  • Laube S, Zotz G (2006) Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Ann Bot 97(6):1103–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurenti-Santos AC (2008) Composição florística e estrutura da comunidade de epífitas vasculares associadas a trilhas no Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. MSc Dissertation, Instituto de Botânica da Secretaria de Estado do Meio Ambiente, São Paulo

  • Legendre P, Legendre LF (2012) Numerical ecology, 3rd edn. Elsevier, Oxford

    Google Scholar 

  • Legendre P, Mi X, Ren H, Ma K, Yu M, Sun IF, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of china. Ecology 90(3):663–674

    Article  PubMed  Google Scholar 

  • Long JS (1997) Regression models for categorical and limited dependent variables, advanced quantitative techniques in the social sciences, vol 7. Sage Publications, Thousand Oaks

    Google Scholar 

  • López-Villalobos A, Flores-Palacios A, Ortiz-Pulido R (2008) The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecol 198(2):265–274

    Article  Google Scholar 

  • Moffett MW (2000) What’s “up”? A critical look at the basic terms of canopy biology. Biotropica 32(4):569–596

    Article  Google Scholar 

  • Nadkarni NM (1988) Tropical rainforest ecology from a canopy perspective. In: Almeda F, Pringle CM (eds) Tropical rainforests: diversity and conservation. California Academy of Sciences and Pacific Division, American Association for the Advancement of Science, San Francisco, pp 189–207

    Google Scholar 

  • Oliveira R, Zaú A (1995) Método alternativo de subida em árvore. Bromélia 2(1):6–11

    Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19(2):174–184

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625

    Article  PubMed  Google Scholar 

  • Punchi-Manage R, Wiegand T, Wiegand K, Getzin S, Gunatilleke CS, Gunatilleke IN (2014) Effect of spatial processes and topography on structuring species assemblages in a Sri Lankan dipterocarp forest. Ecol 95(2):376–386

    Article  Google Scholar 

  • Rossi L (1994) A flora arbóreo-arbustiva da mata da Reserva da Cidade Universitária “Armando de Salles Oliveira” (São Paulo, Brasil). Boletim do Instituto de Botânica 9:1–105

    Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. http://www.R-project.org/

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19(11):605–611

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2008) Fern classification. In: Ranker TA, Haufler CH (eds) The biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 417–467

    Chapter  Google Scholar 

  • Tabarelli M (1994) Clareiras naturais e a dinâmica sucessional de um trecho de floresta na Serra da Cantareira, SP. MSc Dissertation, Universidade de São Paulo, São Paulo

  • The Plant List (2013) The plant list. http://www.theplantlist.org/

  • Turner IM, Tan HTW, Wee YC, Ibrahim AB, Chew PT, Corlett RT (1994) A study of plant species extinction in Singapore: lessons of the conservation of tropical biodiversity. Conserv Biol 8(3):705–712

    Article  Google Scholar 

  • Turner IM, Chua KS, Ong JSY, Soong BC, Tan HTW (1996) A century of plant species loss from an isolated fragment of lowland tropical rain forest. Conserv Biol 10(4):1229–1244

    Article  Google Scholar 

  • Varanda E (1977) Balanço hídrico de espécies da Mata do Butantã. MSc Dissertation, Universidade de São Paulo, São Paulo

  • Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Wagner K, Bogusch W, Zotz G (2013) The role of the regeneration niche for the vertical stratification of vascular epiphytes. J Trop Ecol 29(04):277–290

    Article  Google Scholar 

  • Wolf JH (2005) The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. For Ecol Manag 212(1):376–393

    Article  Google Scholar 

  • Wolf JHD, Gradstein SR, Nadkarni NM (2009) A protocol for sampling vascular epiphyte richness and abundance. J Trop Ecol 25:107–121

    Article  Google Scholar 

  • Woods CL, DeWalt SJ (2013) The conservation value of secondary forests for vascular epiphytes in central Panama. Biotropica 45(1):119–127

    Article  Google Scholar 

  • Wyse SV, Burns BR (2011) Do host bark traits influence trunk epiphyte communities? New Zealand. J Ecol 35(3):296–301

    Google Scholar 

  • Yeaton RI, Gladstone DE (1982) The pattern of colonization of epiphytes on Calabash Trees (Crescentia alata HBK.) in Guanacaste Province, Costa Rica. Biotropica 14(2):137–140

    Article  Google Scholar 

  • Zotz G (2007) Johansson revisited: the spatial structure of epiphyte assemblages. J Veg Sci 18(1):123–130

    Article  Google Scholar 

  • Zotz G, Schultz S (2008) The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol 195(1):131–141

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian “Coordenadoria de Aperfeiçoamento de Pessoal (CAPES)” for sponsoring the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Dislich.

Additional information

Communicated by William E. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dislich, R., Mantovani, W. Vascular epiphyte assemblages in a Brazilian Atlantic Forest fragment: investigating the effect of host tree features. Plant Ecol 217, 1–12 (2016). https://doi.org/10.1007/s11258-015-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0553-x

Keywords

Navigation