Skip to main content
Log in

The relationship between bark peeling rate and the distribution and mortality of two epiphyte species

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Tree bark characteristics influence epiphyte establishment and survival and consequently the way in which epiphytes are distributed on trees. Tree species with peeling bark have been reported as poor epiphyte hosts. We analyzed the distribution and seedling mortality of two Tillandsia species (Bromeliaceae) in relation to rate of bark peeling of Bursera fagaroides (Burseraceae). The highest peeling rate (0.12% per day) took place on the trunk and the lowest rate on twigs (0.04% per day; branches ≤2 cm in diameter). The highest proportion of Tillandsia plants appeared on twigs. The distributions of juvenile and adult plants on twigs were higher than those expected based on the distribution of first-year seedlings, suggesting that on twigs, survival could be greater than on trunks and branches, canopy areas where peeling is faster. On the trunk and branches, in contrast, the proportion of juveniles and adults were similar to or less than that expected for first-year seedlings. The main cause of mortality was peeling and the area of minor overall mortality was the trunk, suggesting that this area should be favored as the main distribution area for the Tillandsia species but is not. Our results show that the peeling rate of B. fagaroides depends on branch size and suggest that the Tillandsia distribution depends not only on peeling rate but also on seed dispersion. We suggest that to colonize B. fagaroides epiphytes would either have adaptations to counteract the peeling rate or should occur in the areas of lowest peeling rate located in the exterior crown of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerman JD, Montalvo AM, Vera AM (1989) Epiphyte host specificity of Encyclia krugii, a Puerto Rican endemic orchid. Lindleyana 4:74–77

    Google Scholar 

  • Ackerman JD, Sabat A, Zimmerman JK (1996) Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192–196

    Article  Google Scholar 

  • Bennett BC (1987) Spatial distribution of Catopsis and Guzmania (Bromeliaceae) in Southern Florida. Bull Torrey Bot Club 114:265–271

    Article  Google Scholar 

  • Benzing DH (1978a) Germination and early establishment of Tillandsia circinnata Schlecht (Bromeliaceae) on some of its host and other supports in the southern Florida. Selbyana 5:95–106

    Google Scholar 

  • Benzing DH (1978b) The life history profile of Tillandsia circinnata (Bromeliaceae) and the rarity of extreme epiphytism among the angiosperms. Selbyana 2:325–337

    Google Scholar 

  • Benzing DH (1981) The population dynamics of Tillandsia circinnata (Bromeliaceae): Cypress crown colonies in southern Florida. Selbyana 5:256–263

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Google Scholar 

  • Benzing DH, Davidson EA (1979) Oligotrophic Tillandsia circinnata Schlecht. (Bromeliaceae): an assessment of its patterns of mineral allocation and reproduction. Am J Bot 66:386–397

    Article  Google Scholar 

  • Brown DA (1990) El epifitismo en las selvas montanas del Parque Nacional “El Rey” Argentina: Composición florística y patrón de distribución. Rev Biol Trop 38:155–166

    Google Scholar 

  • Callaway RM, Reihnart KO, Tucker SC, Pennings SC (2001) Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos 94:433–441

    Article  Google Scholar 

  • Callaway RM, Reihnart KO, Moore GW, Moore DJ, Pennings SC (2002) Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221–230

    Article  Google Scholar 

  • Cascante-Marin A (2006) Establishment, reproduction and genetics of epiphytic bromeliad communities during premontane forest succession in Costa Rica. Ph.D. thesis, University of Amsterdam, Amsterdam

  • Castillo-Campos G, Medina-Abreo ME (2002) Árboles y arbustos de la reserva natural de La Mancha, Veracruz. Instituto de Ecología A. C., Xalapa

    Google Scholar 

  • Castro-Hernández JC, Wolf JHD, García-Franco JG, González-Espinosa M (1997) The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Rev Biol Trop 47:763–773

    Google Scholar 

  • Catling PM, Lefkovitch LP (1989) Associations of vascular epiphytes in a Guatemalan cloud forest. Biotropica 21:35–40

    Article  Google Scholar 

  • Flores-Palacios A, Ortiz-Pulido R (2005) Epiphyte orchid establishment on termite carton trails. Biotropica 37:457–461

    Article  Google Scholar 

  • Frei JK (1974) The ecology of epiphytic orchids in relation to their substrates. In: Szwat HH, Wemple J (eds) Proceedings of the Firths symposium on the scientific aspects of orchids, University of Detroit, Detroit, pp 46–62

  • Freiberg M (1996) Spatial distribution of vascular epiphytes on three emergent canopy trees in French Guiana. Biotropica 28:345–355

    Article  Google Scholar 

  • García-Franco JG (1996) Distribución de Epifitas Vasculares en Matorrales Costeros de Veracruz, México. Acta Bot Mex 37:1–9

    Google Scholar 

  • García-Franco JG, Rico-Gray V (1988) Experiments on seed dispersal and deposition patterns of epiphytes. The case of Tillandsia deppeana Steudel (Bromeliaceae). Phytologia 65:73–78

    Google Scholar 

  • Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29:205–220

    Article  Google Scholar 

  • Kiew R, Anthonysamy S (1987) A comparative study of vascular epiphytes in three epiphyte-rich habitats at Ulu Endau, Johore, Malaysia. Malay Nat J 41:303–315

    Google Scholar 

  • Kress WJ (1986) The systematic distribution of vascular epiphytes: an update. Selbyana 9:2–22

    Google Scholar 

  • Lyons B, Nadkarni NM, North MR (2000) Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-grow Douglas-fir forest. Can J Bot 78:957–968

    Article  Google Scholar 

  • Madigosky SR (2004) Tropical microclimatic considerations. In: Lowman MD, Rinker HB (eds) Forest canopies. Elsevier Academic Press, London, pp 24–48

    Chapter  Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82

    Article  Google Scholar 

  • Martínez ML, García-Franco JG (2004) Plant–plant interactions in coastal dunes. In: Martínez ML, Pussy NP (eds) Coastal dunes, ecology and conservation. Spring-Verlag, Berlin, pp 205–220

    Google Scholar 

  • Martínez-García E (1999) Estudio ecológico de las bromelias epífitas y sus hospederos en Selva Caducifolia de la Sierra de Huautla, Morelos. B.Sc. thesis. Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico

  • Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. J Trop Ecol 21:651–660

    Article  Google Scholar 

  • Mondragon D, Durán R, Ramírez I, Olmsted I (1999) Population dynamics of Tillandsia brachycaulos Schltdl. (Bromeliaceae) in Dzbilchaltun National Park, Yucatán. Selbyana 20:250–255

    Google Scholar 

  • Mondragon D, Durán R, Ramírez I, Valverde T (2004) Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Peninsula, Mexico. J Trop Ecol 20:189–200

    Article  Google Scholar 

  • Nadkarni NM (2000) Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32:358–363

    Google Scholar 

  • Rico-Gray V, García-Franco JG, Puch A, Sima P (1988) Composition and structure of a tropical dry forest in Yucatan, Mexico. Int J Ecol Environ Sci 14:21–29

    Google Scholar 

  • Stevens GC (1987) Lianas as structural parasites: the Bursera simaruba example. Ecology 68:77–81

    Article  Google Scholar 

  • Talley SM, Setzer WN, Jackes BR (1996) Host associations of two adventitious-root-climbing vines in a north Queensland tropical rain forest. Biotropica 28:356–366

    Article  Google Scholar 

  • ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331–339

    Article  Google Scholar 

  • Todzia C (1986) Growth habits, host tree species and density of hemiepiphytes on Barro Colorado island, Panama. Biotropica 18:22–27

    Article  Google Scholar 

  • Tremblay RL, Zimmerman JK, Lebrón L, Bayman P, Sastre I, Axelrod F, Alers-García L (1998) Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biol Conserv 85:297–304

    Article  Google Scholar 

  • Valencia-Díaz S (1995) Estudio cuantitativo de la vegetación perenne asociada al pitayo (Stenocereus queretaroensis (Web.) Buxb.) en la cuenca de Sayula, Jalisco. B.Sc. thesis. Facultad de Biología, Universidad de Guadalajara, Guadalajara, Jalisco

  • Winkler M (2005) Population dynamics of epiphytes related to canopy structure in a Mexican humid montane forest. Ph.D. thesis, University of Natural Resources and Applied Life Sciences, Vienna

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Zimmerman JK, Olmsted IC (1992) Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in México. Biotropica 24:402–427

    Article  Google Scholar 

  • Zotz G (1997) Substrate use of three epiphytic bromeliads. Ecography 20:264–270

    Article  Google Scholar 

  • Zotz G (2004) Growth and survival of the early stages of the heteroblastic bromeliad Vriesia sanguinolenta. Ecotropica 10:51–57

    Google Scholar 

  • Zotz G, Andrade JL (1998) Water relations of two co-occurring epiphyte bromeliads. J Plant Physiol 152:542–554

    Google Scholar 

  • Zotz G, Tyree T (1996) Water stress in the epiphyte orchid Dimerandra emarginata (G. Meyer) Hoehne. Oecologia 107:151–159

    Article  Google Scholar 

  • Zotz G, Vollrath B (2002) Substrate preferences of epiphytic bromeliads: an experimental approach. Acta Oecol 23:99–102

    Article  Google Scholar 

  • Zotz G, Vollrath B (2003) The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. J Trop Ecol 19:81–90

    Article  Google Scholar 

  • Zotz G, Bermejo P, Dietz H (1999) The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama. J Biogeogr 26:761–776

    Article  Google Scholar 

  • Zotz G, Laube S, Scmidt G (2005) Long-term population dynamics of the epiphyte bromeliad Werahuia sanguinolenta. Ecography 28:806–814

    Article  Google Scholar 

Download references

Acknowledgments

M. L. Villalobos Arana and L. Solis-Montero helped during field work. Adolfo Espejo-Serna helped with species identification. Comments and suggestions by D. Mondragon, J. Gonzalez-Astorga, J. G. García-Franco, S. Valencia-Díaz, C. Ibarra Cerdeño, Steve Weller, and two anonymous reviewers improved the manuscript. This study was supported by a TELMEX scholarship grant to ALV. A preliminary version was presented as bachelor thesis by ALV at the Facultad de Química y Biología, Universidad de las Américas-Puebla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Flores-Palacios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Villalobos, A., Flores-Palacios, A. & Ortiz-Pulido, R. The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecol 198, 265–274 (2008). https://doi.org/10.1007/s11258-008-9402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9402-5

Keywords

Navigation