Skip to main content

Advertisement

Log in

Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory

  • Original Paper
  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We studied species richness, composition, and vertical distribution of vascular epiphytes at two sites in the Bolivian Andes. To account for the epiphyte flora on understory trees, epiphytes on shrubs and small trees were sampled in 20 × 20 m2 subplots around each sampled canopy tree; this understory zone U is introduced as an addition to the well-established five vertical Johansson tree zones. More than 20% of about 500 species recorded were found only in the understory subplots, including ca. 40% of aroids, 35%–40% of piperoids, and 25%–30% of ferns. Habitat generalists (occurring in three or more zones) were most common, contributing about 50% of all species, specialists (occurring only in two zones, or in three continuous ones) 34%–42%, and hemiepiphytes 6%–16%. Canopy epiphytes (occurring  > 90% in tree zones Z3–5) were mainly represented by orchids and ferns, many with special adaptations to drought stress such as pseudobulbs, succulence, and poikilohydry. Trunk epiphytes ( > 90% in understory and tree zones Z1–2) reached highest relative species numbers among piperoids and ferns. Most hemiepiphytes were also trunk epiphytes, due to their characteristic growth pattern, and included mainly aroids. The vertical distribution of epiphytes within a tree is determined by several microenvironmental gradients, with light intensity, wind speed, and air temperature increasing and air humidity decreasing from the ground level to the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acebey A, Krömer T (2001) Diversidad y distribución vertical de epífitas en los alrededores del campamento río Eslabón y de la laguna Chalalán, Parque Nacional Madidi, Dpto. La Paz, Bolivia. Rev Soc Boliviana Bot 3:104–123

    Google Scholar 

  • Acebey A, Gradstein SR, Krömer T (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. J Trop Ecol 19:9–18

    Article  Google Scholar 

  • Bach K (2004) Vegetationskundliche Untersuchungen zur Höhenzonierung tropischer Bergregenwälder in den Anden Boliviens. Görich & Weiershäuser, Marburg, Germany

    Google Scholar 

  • Bennett BC (1984) A comparison of the spatial distribution of Tillandsia flexuosa and T. pruinosa. Florida Sci 47:141–144

    Google Scholar 

  • Bennett BC (1986) Patchiness, diversity and abundance relationships of vascular epiphytes. Selbyana 9:70–75

    Google Scholar 

  • Bennett BC (1987) The spatial distribution of Catopsis and Guzmania (Bromeliaceae) in southern Florida. Bull Torrey Bot Club 114:265–271

    Article  Google Scholar 

  • Benzing DH (1990) The biology of vascular epiphytes. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Benzing DH (1995) The physical mosaic and plant variety in forest canopies. Selbyana 16:159–168

    Google Scholar 

  • Bøgh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:25–34

    Google Scholar 

  • Cardelús CL, Chazdon RL (2005) Inner-crown microenvironments of two emergent tree species in a lowland wet forest. Biotropica 37:238–244

    Article  Google Scholar 

  • Catling PM, Lefkovitch LP (1989) Associations of vascular epiphytes in a Guatemalan cloud forest. Biotropica 21:35–40

    Article  Google Scholar 

  • Chase MW (1987) Obligate twig epiphytism in the Oncidiinae and other neotropical orchids. Selbyana 10:24–30

    Google Scholar 

  • Coxson D, Nadkarni NM (1995) Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In: Lowman M, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, USA, pp 495–546

    Google Scholar 

  • Croat TB (1988) Ecology and life forms of Araceae. Aroideana 11:4–55

    Google Scholar 

  • Ek RC, ter Steege H, Biesmeijer KC (1997) Vertical distribution and associations of vascular epiphytes in four different forest types in the Guianas. In: TROPENBOS (ed) Botanical diversity in the tropical rain forest of Guyana. TROPENBOS, Utrecht, The Netherlands, pp 65–89

  • Engwald S (1999) Diversität und Ökologie der vaskulären Epiphyten eines Berg-und eines Tieflandregenwaldes in Venezuela. Libri-Books on Demand, Hamburg, Germany

    Google Scholar 

  • Flores-Palacios A, García-Franco JG (2001) Sampling methods for vascular epiphytes: their effectiveness in recording species richness and frequency. Selbyana 22:181–191

    Google Scholar 

  • Freiberg M (1996) Spatial distribution of vascular epiphytes on three emergent canopy trees in French Guiana. Biotropica 28:345–355

    Article  Google Scholar 

  • Freiberg M (1997) Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana 18:77–84

    Google Scholar 

  • Freiberg M (1999) The vascular epiphytes on a Virola michelii tree (Myristicaceae) in French Guiana. Ecotropica 5:75–81

    Google Scholar 

  • Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688

    Article  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Miss Bot Garden 74:205–233

    Article  Google Scholar 

  • Gradstein SR, Nadkarni NM, Krömer T, Holz I, Nöske N (2003) A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana 24:105–111

    Google Scholar 

  • Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Article  Google Scholar 

  • Hietz P, Hietz-Seifert U (1995) Composition and ecology of epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veget Sci 6:487–498

    Article  Google Scholar 

  • Ibisch PL (1996) Neotropische Epiphytendiversität-das Beispiel Bolivien. Martina Galunder-Verlag, Wiehl, Germany

    Google Scholar 

  • Johansson DR (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suecica 59:1–136

    Google Scholar 

  • Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol 149:181–193

    Article  Google Scholar 

  • Kessler M (2001a) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodivers Conserv 10:1897–1921

    Article  Google Scholar 

  • Kessler M (2001b) Pteridophyte species richness in Andean forests in Bolivia. Biodivers Conserv 10:1473–1495

    Article  Google Scholar 

  • Kessler M, Bach K (1999) Using indicator families for vegetation classification in species-rich Neotropical forests. Phytocoenologia 29:485–502

    Google Scholar 

  • Krömer T (2003) Diversität und ökologie der vaskulären Epiphyten in primären und sekundären Bergwäldern Boliviens. Cuvillier Verlag, Göttingen, Germany

    Google Scholar 

  • Krömer T, Gradstein SR (2003) Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190–195

    Google Scholar 

  • Krömer T, Kessler M (2006) Filmy ferns (Hymenophyllaceae) as high-canopy epiphytes. Ecotropica 12:57–63

    Google Scholar 

  • Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809

    Article  Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Nadkarni NM (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249–256

    Article  Google Scholar 

  • Nadkarni NM, Matelson T (1989) Bird use of epiphyte resources in neotropical trees. Condor 69:891–907

    Article  Google Scholar 

  • Nieder J, Zotz G (1998) Methods of analyzing the structure and dynamics of vascular epiphyte communities. Ecotropica 4:33–39

    Google Scholar 

  • Nieder J, Engwald S, Barthlott W (1999) Patterns of neotropical epiphyte diversity. Selbyana 20:66–75

    Google Scholar 

  • Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, San Diego, USA, pp 73–106

    Google Scholar 

  • Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10:155–157

    Article  Google Scholar 

  • Prósperi J, Caballé G, Caraglio Y (2001) Lianas and hemiepiphytes: distribution, development, and adaptations. Selbyana 22:197–212

    Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    CAS  Google Scholar 

  • Putz FE, Holbrook NM (1986) Notes on the natural history of hemiepiphytes. Selbyana 9:61–69

    Google Scholar 

  • Ray TS (1992) Foraging behavior in tropical herbaceous climbers (Araceae). J Ecol 80:189–203

    Article  Google Scholar 

  • Rudolph D, Rauer G, Nieder J, Barthlott W (1998) Distributional patterns of epiphytes in the canopy and phorophyte characteristics in a western Andean rain forest in Ecuador. Selbyana 19:27–33

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004a) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  Google Scholar 

  • Schneider H, Smith AR, Cranfill R, Hildebrand TJ, Haufler CH, Ranker TA (2004b) Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Mol Phylogenet Evol 31:1041–1063

    Article  CAS  Google Scholar 

  • Shaw JD, Bergstrom DM (1997) A rapid assessment technique of vascular epiphyte diversity at forest and regional levels. Selbyana 18:195–199

    Google Scholar 

  • Shmida A, Whittaker RH (1981) Patterns and biological microsite effects in two shrub communities, southern California. Ecology 62:234–251

    Article  Google Scholar 

  • ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331–339

    Article  Google Scholar 

  • van Reenen GBA, Gradstein SR (1983) Studies on Colombian cryptogams XX. A transect analysis of the bryophyte vegetation along an altitudinal gradient on the Sierra Nevada de Santa Marta, Colombia. Acta Bot Neerland 32:163–175

    Google Scholar 

  • Walsh RPD (1996) Microclimate and hydrology. In: Richards PW (ed) The tropical rainforest. Cambridge University Press, Cambridge, UK, pp 206–236

    Google Scholar 

  • Young KR, León B (1991) Observations on the understorey climbing fern, Polybotrya pubens (Dryopteridaceae) in a Peruvian rain forest. Am Fern J 81:63–67

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank A. Acebey and D. Chairiqui for fieldwork assistance, T.B. Croat, H.E. Luther, R.␣Vásquez, R. Callejas and A.R. Smith for specimen identification, the staff of the Herbario Nacional de Bolivia in La Paz for logistical support, and two anonymous reviewers for valuable comments. This study was supported by the German Academic Exchange Service (DAAD) and the A.F.W. Schimper-Stiftung (grants to T.␣Krömer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Krömer.

Appendix

Appendix

Table 3 Number of records of 242 epiphyte species at two study sites (Sapecho: Sa; n = 40 trees, Cotapata: Co; n = 24) in Bolivian montane forest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krömer, T., Kessler, M. & Gradstein, S.R. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecol 189, 261–278 (2007). https://doi.org/10.1007/s11258-006-9182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-006-9182-8

Keywords

Navigation