Skip to main content
Log in

How long do we need to reach sufficient expertise with the avatera® robotic system?

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the learning curve in four basic surgical skills in laparoscopic and robotic surgeries, and evaluate the approximate time needed to reach sufficient expertise in performing these tasks with the avatera® system.

Methods

Twenty urology residents with no previous experience in dry-lab and robotic surgery were asked to complete four basic laparoscopic tasks (peg transfer, circle cutting, needle guidance, and suturing) laparoscopically and robotically. All participants were asked to complete the tasks first after watching the Uroweb educational material and, second, after undertaking a 2-hour training in robotic and laparoscopic dry-lab. Thereafter, all trainees continued to undertake 2-hour training programs until being able to complete the tasks with the avatera® robot at the desired time. Paired t test and one-way ANOVA test were used to analyze time differences between the groups.

Results

Time needed to complete all tasks either robotically or laparoscopically was significantly less in the second compared to the first attempt for all Groups in each Task. In the robotic dry-lab, time needed to complete the tasks was significantly less than in the laparoscopic dry-lab. A significant effect of previous laparoscopic experience of the participants on the training time needed to achieve most of the goal times was detected.

Conclusion

The results of the study highlight the role of previous laparoscopic experience in the training time needed to achieve the performance time goals and demonstrate that the learning curve of basic surgical skills using the avatera® system is steeper than the laparoscopic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data is available on request from the corresponding author.

References

  1. Zahid A, Ayyan M, Farooq M, Cheema HA, Shahid A, Naeem F, Ilyas MA, Sohail S (2023) Robotic surgery in comparison to the open and laparoscopic approaches in the field of urology: a systematic review. J Robot Surg 17(1):11–29. https://doi.org/10.1007/s11701-022-01416-7

    Article  PubMed  Google Scholar 

  2. Surgical I (2020) Sustainability report 2020. https://www.intuitive.com/en-us/-/media/Project/Intuitive-surgical/files/pdf/2020-intuitive-sustainability-report.pdf

  3. Dai X, Fan S, Hao H, Yang K, Shen C, Xiong G, Li X, Cui L, Li X, Zhou L (2021) Comparison of KD-SR-01 robotic partial nephrectomy and 3D-laparoscopic partial nephrectomy from an operative and ergonomic perspective: a prospective randomized controlled study in porcine models. Int J Med Robot 17(2):e2187. https://doi.org/10.1002/rcs.2187

    Article  PubMed  Google Scholar 

  4. Berguer R, Smith W (2006) An ergonomic comparison of robotic and laparoscopic technique: the influence of surgeon experience and task complexity. J Surg Res 134(1):87–92. https://doi.org/10.1016/j.jss.2005.10.003

    Article  PubMed  Google Scholar 

  5. Khosla A, Wagner AA (2016) Robotic surgery of the kidney, bladder, and prostate. Surg Clin N Am 96(3):615–636. https://doi.org/10.1016/j.suc.2016.02.015

    Article  PubMed  Google Scholar 

  6. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E (2017) Future of robotic surgery in urology. BJU Int 120(6):822–841. https://doi.org/10.1111/bju.13851

    Article  PubMed  Google Scholar 

  7. Avateramedical (2022) Avaterasystem. https://www.avatera.eu/en/avatera-system

  8. Kallidonis P, Tatanis V, Peteinaris A, Katsakiori P, Gkeka K, Faitatziadis S, Vagionis A, Vrettos T, Stolzenburg JU, Liatsikos E (2023) Robot-assisted pyeloplasty for ureteropelvic junction obstruction: initial experience with the novel avatera system. World J Urol 41(11):3155–3160. https://doi.org/10.1007/s00345-023-04586-7

    Article  CAS  PubMed  Google Scholar 

  9. Peteinaris A, Kallidonis P, Tsaturyan A, Pagonis K, Faitatziadis S, Gkeka K, Vagionis A, Natsos A, Obaidat M, Anaplioti E, Tatanis V, Vrettos T, Liatsikos E (2023) The feasibility of robot-assisted radical cystectomy: an experimental study. World J Urol 41(2):477–482. https://doi.org/10.1007/s00345-022-04266-y

    Article  PubMed  Google Scholar 

  10. Gkeka K, Tsaturyan A, Faitatziadis S, Peteinaris A, Anaplioti E, Pagonis K, Vagionis A, Tatanis V, Vrettos T, Kallidonis P, Liatsikos E (2023) Robot-assisted radical nephrectomy using the novel avatera robotic surgical system: a feasibility study in a porcine model. J Endourol 37(3):273–278. https://doi.org/10.1089/end.2022.0596

    Article  PubMed  Google Scholar 

  11. Wong SW, Crowe P (2022) Factors affecting the learning curve in robotic colorectal surgery. J Robot Surg. https://doi.org/10.1007/s11701-022-01373-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. https://www.auanet.org/meetings-and-education/educational-programs/e-learning

  13. Somani BK, Van Cleynenbreugel B, Gozen AS, Skolarikos A, Wagner C, Beatty J, Barmoshe S, Gaya Sopena JM, Kalogeropoulos T, Faba OR, Salas RS, Schmidt M, Siena G, Pini G, Palou J, Geraghty R, Veneziano D (2020) Outcomes of European Basic Laparoscopic Urological Skills (EBLUS) Examinations: Results from European School of Urology (ESU) and EAU Section of Uro-Technology (ESUT) over 6 Years (2013–2018). Eur Urol Focus 6(6):1190–1194. https://doi.org/10.1016/j.euf.2019.01.007

    Article  PubMed  Google Scholar 

  14. (EAU) EAoU (2022) Laparoscopy. https://uroweb.org/education-events/laparoscopy

  15. https://uroweb.org/education

  16. Khan N, Abboudi H, Khan MS, Dasgupta P, Ahmed K (2014) Measuring the surgical “learning curve”: methods, variables and competency. BJU Int 113(3):504–508. https://doi.org/10.1111/bju.12197

    Article  PubMed  Google Scholar 

  17. Wiener S, Haddock P, Shichman S, Dorin R (2015) Construction of a urologic robotic surgery training curriculum: how many simulator sessions are required for residents to achieve proficiency? J Endourol 29(11):1289–1293. https://doi.org/10.1089/end.2015.0392

    Article  PubMed  Google Scholar 

  18. Schmidt MW, Koppinger KF, Fan C, Kowalewski KF, Schmidt LP, Vey J, Proctor T, Probst P, Bintintan VV, Muller-Stich BP, Nickel F (2021) Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill. BJS Open. https://doi.org/10.1093/bjsopen/zraa066

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lovegrove CE, Elhage O, Khan MS, Novara G, Mottrie A, Dasgupta P, Ahmed K (2017) Training modalities in robot-assisted urologic surgery: a systematic review. Eur Urol Focus 3(1):102–116. https://doi.org/10.1016/j.euf.2016.01.006

    Article  PubMed  Google Scholar 

  20. Brunckhorst O, Volpe A, van der Poel H, Mottrie A, Ahmed K (2016) Training, simulation, the learning curve, and how to reduce complications in urology. Eur Urol Focus 2(1):10–18. https://doi.org/10.1016/j.euf.2016.02.004

    Article  PubMed  Google Scholar 

  21. Soomro N, Hashimoto D, Porteous A, Ridley C, Marsh W, Ditto R, Roy S (2019) Systematic review of learning curves in robot-assisted surgery. BJS Open. https://doi.org/10.1002/bjs5.50235

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yurko YY, Scerbo MW, Prabhu AS, Acker CE, Stefanidis D (2010) Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool. Simul Healthc 5(5):267–271. https://doi.org/10.1097/SIH.0b013e3181e3f329

    Article  PubMed  Google Scholar 

  23. Gauger P, Hauge L, Andreatta P, Hamstra S, Hillard M, Arble E, Kasten S, Mullan P, Cederna P, Minter R (2010) Laparoscopic simulation training with proficiency targets improves practice and performance of novice surgeons. Am J Surg 199:72–80. https://doi.org/10.1016/j.amjsurg.2009.07.034

    Article  PubMed  Google Scholar 

  24. Bric J, Connolly M, Kastenmeier A, Goldblatt M, Gould JC (2014) Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc 28(12):3343–3348. https://doi.org/10.1007/s00464-014-3624-5

    Article  PubMed  Google Scholar 

  25. McVey R, Goldenberg MG, Bernardini MQ, Yasufuku K, Quereshy FA, Finelli A, Pace KT, Lee JY (2016) Baseline laparoscopic skill may predict baseline robotic skill and early robotic surgery learning curve. J Endourol 30(5):588–592. https://doi.org/10.1089/end.2015.0774

    Article  PubMed  Google Scholar 

  26. Chahal B, Aydin A, Amin MSA, Ong K, Khan A, Khan MS, Ahmed K, Dasgupta P (2023) Transfer of open and laparoscopic skills to robotic surgery: a systematic review. J Robot Surg 17(4):1207–1225. https://doi.org/10.1007/s11701-022-01492-9

    Article  PubMed  Google Scholar 

  27. Kassite I, Bejan-Angoulvant T, Lardy H, Binet A (2019) A systematic review of the learning curve in robotic surgery: range and heterogeneity. Surg Endosc 33(2):353–365. https://doi.org/10.1007/s00464-018-6473-9

    Article  CAS  PubMed  Google Scholar 

  28. Brunaud L, Bresler L, Ayav A, Zarnegar R, Raphoz AL, Levan T, Weryha G, Boissel P (2008) Robotic-assisted adrenalectomy: what advantages compared to lateral transperitoneal laparoscopic adrenalectomy? Am J Surg 195(4):433–438. https://doi.org/10.1016/j.amjsurg.2007.04.016

    Article  PubMed  Google Scholar 

  29. Leite M, Carvalho AF, Costa P, Pereira R, Moreira A, Rodrigues N, Laureano S, Correia-Pinto J, Vilaca JL, Leao P (2016) Assessment of laparoscopic skills performance: 2D versus 3D vision and classic instrument versus new hand-held robotic device for laparoscopy. Surg Innov 23(1):52–61. https://doi.org/10.1177/1553350615585638

    Article  PubMed  Google Scholar 

  30. Moorthy K, Munz Y, Dosis A, Hernandez J, Martin S, Bello F, Rockall T, Darzi A (2004) Dexterity enhancement with robotic surgery. Surg Endosc 18(5):790–795. https://doi.org/10.1007/s00464-003-8922-2

    Article  CAS  PubMed  Google Scholar 

  31. Munz Y, Moorthy K, Dosis A, Hernandez JD, Bann S, Bello F, Martin S, Darzi A, Rockall T (2004) The benefits of stereoscopic vision in robotic-assisted performance on bench models. Surg Endosc 18(4):611–616. https://doi.org/10.1007/s00464-003-9017-9

    Article  CAS  PubMed  Google Scholar 

  32. Hopper AN, Jamison MH, Lewis WG (2007) Learning curves in surgical practice. Postgrad Med J 83(986):777–779. https://doi.org/10.1136/pgmj.2007.057190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pierorazio PM, Patel HD, Feng T, Yohannan J, Hyams ES, Allaf ME (2011) Robotic-assisted versus traditional laparoscopic partial nephrectomy: comparison of outcomes and evaluation of learning curve. Urology 78(4):813–819. https://doi.org/10.1016/j.urology.2011.04.065

    Article  PubMed  Google Scholar 

  34. https://uroweb.org/eau-sections/eau-robotic-urology-section-erus

  35. Herron DM, Marohn M (2008) A consensus document on robotic surgery. Surg Endosc 22(2):313–325. https://doi.org/10.1007/s00464-007-9727-5. (discussion 311–312)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The avatera system and all the disposable instruments were provided by avateramedical GmbH for the conduction of this experimental study.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

KG, AP, EA, SF, KP, TV carried out the experiments. AT, PK and VT conceived and planned the experiments. KP, AN, MO, AV, TS contributed to the interpretation of the results. KG, AP, PK took the lead in writing the manuscript. EL, PK supervised the project. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Evangelos Liatsikos.

Ethics declarations

Competing interests

Professor Liatsikos is medical advisor of Avateramedical. The other authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaplioti, E., Gkeka, K., Katsakiori, P. et al. How long do we need to reach sufficient expertise with the avatera® robotic system?. Int Urol Nephrol 56, 1577–1583 (2024). https://doi.org/10.1007/s11255-023-03914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03914-5

Keywords

Navigation