Skip to main content
Log in

Fabry disease: where are we now?

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Fabry disease (FD) is a multisystemic X-linked disorder characterized by the accumulation of lysosomal globotriaosylceramide (Gb3) secondary to decreased activity of α-galactosidase in cells. Generally, males are more severely affected due to the X-linked inheritance pattern of the disease. However, females are asymptomatic or have a less severe pattern of disease. Enzyme replacement therapy (ERT) is the cornerstone of the treatment of FD. At present, there are two forms of ERT that can be applied to FD patients. Novel therapeutic approaches including chaperone therapy, substrate reduction therapy, and gene therapy have been introduced in the era of treatment of FD. In this review, we aimed to discuss the prevalence, clinical and genetic features, pathophysiology, diagnosis, and therapeutic options in FD patients with nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from TURKFAB Study Ref. [8] with permission

Similar content being viewed by others

References

  1. Schiffmann R (2009) Fabry disease. Pharmacol Ther 122(1):65–77. https://doi.org/10.1016/j.pharmthera.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  2. Anderson W (1898) A case of angiokeratoma. Br J Dermatol 10:113–117

    Article  Google Scholar 

  3. Fabry J (1898) Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (Purpura papulosa haemorrhagica). Arch Derm Syph 43:187–200

    Article  Google Scholar 

  4. Eng CM, Germain DP, Banikazemi M, Warnock DG, Wanner C, Hopkin RJ, Bultas J, Lee P, Sims K, Brodie SE, Pastores GM, Strotmann JM, Wilcox WR (2006) Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet Med 8(9):539–548. https://doi.org/10.1097/01.gim.0000237866.70357.c6

    Article  PubMed  Google Scholar 

  5. Barba-Romero MA, Rivera-Gallego A, Pintos-Morell G (2011) Fabry disease in Spain: description of Spanish patients and a comparison with other European countries using data from the Fabry Outcome Survey (FOS). Int J Clin Pract 65(8):903–910. https://doi.org/10.1111/j.1742-1241.2011.02695.x

    Article  PubMed  Google Scholar 

  6. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzone A, Desnick RJ (2006) High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet 79(1):31–40. https://doi.org/10.1086/504601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsu TR, Niu DM (2018) Fabry disease: review and experience during newborn screening. Trends Cardiovasc Med 28(4):274–281. https://doi.org/10.1016/j.tcm.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  8. Turkmen K, Guclu A, Sahin G, Kocyigit I, Demirtas L, Erdur FM, Sengul E, Ozkan O, Emre H, Turgut F, Unal H, Karaman M, Acikel C, Esen H, Balli E, Bitirgen G, Tonbul HZ, Yilmaz MI, Ortiz A (2016) The prevalence of fabry disease in patients with chronic kidney disease in Turkey: the TURKFAB study. Kidney Blood Press Res 41(6):1016–1024. https://doi.org/10.1159/000452605

    Article  PubMed  Google Scholar 

  9. Yalin SF, Eren N, Sinangil A, Yilmaz VT, Tatar E, Ucar AR, Sevinc M, Can O, Gurkan A, Arik N, Alisir Ecder S, Uyar M, Yasar M, Gulcicek S, Mese M, Dheir H, Cakir U, Koksal Cevher S, Turkmen K, Guven B, Guven Taymez D, Erkalma Senates B, Ecder T, Kocak H, Uslu A, Demir E, Basturk T, Ogutmen MB, Kinalp C, Dursun B, Bicik Bahcebasi Z, Sipahi S, Dede F, Oruc M, Caliskan Y, Genc A, Yelken B, Altiparmak MR, Turkmen A, Seyahi N (2019) Fabry disease prevalence in renal replacement therapy in Turkey. Nephron 142(1):26–33. https://doi.org/10.1159/000496620

    Article  CAS  PubMed  Google Scholar 

  10. Eng C (2007) Combining targeted therapies to enhance the effectiveness of chemotherapy in patients with treatment-refractory colorectal cancer. Clin Colorectal Cancer 6(Suppl 2):S53–59

    Article  CAS  PubMed  Google Scholar 

  11. Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30. https://doi.org/10.1186/1750-1172-5-30

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mehta A, Widmer U (2006) Natural history of Fabry disease. doi:NBK11572 [bookaccession]

  13. Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P (2009) Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med 11(11):790–796. https://doi.org/10.1097/GIM.0b013e3181bb05bb

    Article  PubMed  Google Scholar 

  14. Echevarria L, Benistan K, Toussaint A, Dubourg O, Hagege AA, Eladari D, Jabbour F, Beldjord C, De Mazancourt P, Germain DP (2016) X-chromosome inactivation in female patients with Fabry disease. Clin Genet 89(1):44–54. https://doi.org/10.1111/cge.12613

    Article  CAS  PubMed  Google Scholar 

  15. Terryn W, Cochat P, Froissart R, Ortiz A, Pirson Y, Poppe B, Serra A, Van Biesen W, Vanholder R, Wanner C (2013) Fabry nephropathy: indications for screening and guidance for diagnosis and treatment by the European Renal Best Practice. Nephrol Dial Transplant 28(3):505–517. https://doi.org/10.1093/ndt/gfs526

    Article  PubMed  Google Scholar 

  16. Mehta A, Clarke JT, Giugliani R, Elliott P, Linhart A, Beck M, Sunder-Plassmann G (2009) Natural course of Fabry disease: changing pattern of causes of death in FOS—Fabry Outcome Survey. J Med Genet 46(8):548–552. https://doi.org/10.1136/jmg.2008.065904

    Article  CAS  PubMed  Google Scholar 

  17. Terryn W, Deschoenmakere G, De Keyser J, Meersseman W, Van Biesen W, Wuyts B, Hemelsoet D, Pascale H, De Backer J, De Paepe A, Poppe B, Vanholder R (2013) Prevalence of Fabry disease in a predominantly hypertensive population with left ventricular hypertrophy. Int J Cardiol 167(6):2555–2560. https://doi.org/10.1016/j.ijcard.2012.06.069

    Article  PubMed  Google Scholar 

  18. Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, Sorensen SA, Wilcox WR, Desnick RJ (2009) Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 24(7):2102–2111. https://doi.org/10.1093/ndt/gfp031

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feriozzi S, Torras J, Cybulla M, Nicholls K, Sunder-Plassmann G, West M (2012) The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin J Am Soc Nephrol 7(1):60–69. https://doi.org/10.2215/CJN.03130411

    Article  CAS  PubMed  Google Scholar 

  20. Sakuraba H, Oshima A, Fukuhara Y, Shimmoto M, Nagao Y, Bishop DF, Desnick RJ, Suzuki Y (1990) Identification of point mutations in the alpha-galactosidase A gene in classical and atypical hemizygotes with Fabry disease. Am J Hum Genet 47(5):784–789

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimotori M, Maruyama H, Nakamura G, Suyama T, Sakamoto F, Itoh M, Miyabayashi S, Ohnishi T, Sakai N, Wataya-Kaneda M, Kubota M, Takahashi T, Mori T, Tamura K, Kageyama S, Shio N, Maeba T, Yahagi H, Tanaka M, Oka M, Sugiyama H, Sugawara T, Mori N, Tsukamoto H, Tamagaki K, Tanda S, Suzuki Y, Shinonaga C, Miyazaki J, Ishii S, Gejyo F (2008) Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone. Hum Mutat 29(2):331. https://doi.org/10.1002/humu.9520

    Article  PubMed  Google Scholar 

  22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  23. du Moulin M, Muschol N (2018) p.D313Y is more than just a polymorphism in Fabry disease. Clin Genet 93(6):1258. https://doi.org/10.1111/cge.13233

    Article  CAS  PubMed  Google Scholar 

  24. Oder D, Wanner C, Nordbeck P (2018) The D313Y genotype-pathogenic mutation or polymorphism? Clin Genet 93(6):1257. https://doi.org/10.1111/cge.13237

    Article  CAS  PubMed  Google Scholar 

  25. Capuano I, Garofalo C, Buonanno P, Pinelli M, Di Risi T, Feriozzi S, Riccio E, Pisani A (2019) Identifying Fabry patients in dialysis population: prevalence of GLA mutations by renal clinic screening, 1995–2019. J Nephrol. https://doi.org/10.1007/s40620-019-00663-6

    Article  PubMed  Google Scholar 

  26. Rigoldi M, Concolino D, Morrone A, Pieruzzi F, Ravaglia R, Furlan F, Santus F, Strisciuglio P, Torti G, Parini R (2014) Intrafamilial phenotypic variability in four families with Anderson–Fabry disease. Clin Genet 86(3):258–263. https://doi.org/10.1111/cge.12261

    Article  CAS  PubMed  Google Scholar 

  27. Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285(27):20423–20427. https://doi.org/10.1074/jbc.R110.134452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castaneda JA, Lim MJ, Cooper JD, Pearce DA (2008) Immune system irregularities in lysosomal storage disorders. Acta Neuropathol 115(2):159–174. https://doi.org/10.1007/s00401-007-0296-4

    Article  CAS  PubMed  Google Scholar 

  29. Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241. https://doi.org/10.1111/j.0105-2896.2005.00310.x

    Article  CAS  PubMed  Google Scholar 

  30. Pereira CS, Azevedo O, Maia ML, Dias AF, Sa-Miranda C, Macedo MF (2013) Invariant natural killer T cells are phenotypically and functionally altered in Fabry disease. Mol Genet Metab 108(4):241–248. https://doi.org/10.1016/j.ymgme.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  31. Spada FM, Koezuka Y, Porcelli SA (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 188(8):1529–1534. https://doi.org/10.1084/jem.188.8.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rozenfeld P, Agriello E, De Francesco N, Martinez P, Fossati C (2009) Leukocyte perturbation associated with Fabry disease. J Inherit Metab Dis 32(Suppl 1):S67–77. https://doi.org/10.1007/s10545-009-1060-9

    Article  CAS  PubMed  Google Scholar 

  33. Petermann A, Floege J (2007) Podocyte damage resulting in podocyturia: a potential diagnostic marker to assess glomerular disease activity. Nephron Clin Pract 106(2):c61–66. https://doi.org/10.1159/000101799

    Article  PubMed  Google Scholar 

  34. Sanchez-Nino MD, Perez-Gomez MV, Valino-Rivas L, Torra R, Ortiz A (2019) Podocyturia: why it may have added value in rare diseases. Clin Kidney J 12(1):49–52. https://doi.org/10.1093/ckj/sfy081

    Article  CAS  PubMed  Google Scholar 

  35. Trimarchi H, Canzonieri R, Costales-Collaguazo C, Politei J, Stern A, Paulero M, Gonzalez-Hoyos I, Schiel A, Rengel T, Forrester M, Lombi F, Pomeranz V, Iriarte R, Muryan A, Zotta E (2019) Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry podocytes. Clin Kidney J 12(1):53–60. https://doi.org/10.1093/ckj/sfy053

    Article  CAS  PubMed  Google Scholar 

  36. Trimarchi H, Canzonieri R, Schiel A, Costales-Collaguazo C, Politei J, Stern A, Paulero M, Rengel T, Andrews J, Forrester M, Lombi M, Pomeranz V, Iriarte R, Muryan A, Zotta E, Sanchez-Nino MD, Ortiz A (2016) Increased urinary CD80 excretion and podocyturia in Fabry disease. J Transl Med 14(1):289. https://doi.org/10.1186/s12967-016-1049-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tondel C, Bostad L, Larsen KK, Hirth A, Vikse BE, Houge G, Svarstad E (2013) Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol 24(1):137–148. https://doi.org/10.1681/ASN.2012030316

    Article  CAS  PubMed  Google Scholar 

  38. Yang N, Wang X, Xu F, Zeng C, Wang J (2017) Clinical and pathological characteristics of Fabry disease combined with IgA nephropathy in Chinese patients. Clin Nephrol 87(4):188–195. https://doi.org/10.5414/CN108986

    Article  CAS  PubMed  Google Scholar 

  39. Vujkovac B (2017) Fabry disease: diagnostic methods in nephrology practice. Clin Nephrol 88(13):44–47. https://doi.org/10.5414/CNP88FX28

    Article  PubMed  Google Scholar 

  40. Bennett RL, Hart KA, O'Rourke E, Barranger JA, Johnson J, MacDermot KD, Pastores GM, Steiner RD, Thadhani R (2002) Fabry disease in genetic counseling practice: recommendations of the National Society of Genetic Counselors. J Genet Couns 11(2):121–146. https://doi.org/10.1023/a:1014545521753

    Article  PubMed  Google Scholar 

  41. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, van Roomen C, Mirzaian M, Wijburg FA, Linthorst GE, Vedder AC, Rombach SM, Cox-Brinkman J, Somerharju P, Boot RG, Hollak CE, Brady RO, Poorthuis BJ (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105(8):2812–2817. https://doi.org/10.1073/pnas.0712309105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nowak A, Mechtler TP, Desnick RJ, Kasper DC (2017) Plasma LysoGb3: a useful biomarker for the diagnosis and treatment of Fabry disease heterozygotes. Mol Genet Metab 120(1–2):57–61. https://doi.org/10.1016/j.ymgme.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  43. Nowak A, Mechtler TP, Hornemann T, Gawinecka J, Theswet E, Hilz MJ, Kasper DC (2018) Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Mol Genet Metab 123(2):148–153. https://doi.org/10.1016/j.ymgme.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  44. Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, Goldfarb L, Brady RO, Balow JE, Austin Iii HA, Kopp JB (2002) Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 81(2):122–138. https://doi.org/10.1097/00005792-200203000-00003

    Article  CAS  Google Scholar 

  45. Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, Lemay R, Linthorst GE, Packman S, Scott CR, Waldek S, Warnock DG, Weinreb NJ, Wilcox WR (2015) Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 52(5):353–358. https://doi.org/10.1136/jmedgenet-2014-102797

    Article  CAS  PubMed  Google Scholar 

  46. Beck M, Hughes D, Kampmann C, Larroque S, Mehta A, Pintos-Morell G, Ramaswami U, West M, Wijatyk A, Giugliani R (2015) Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: a Fabry Outcome Survey analysis. Mol Genet Metab Rep 3:21–27. https://doi.org/10.1016/j.ymgmr.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. El Dib R, Gomaa H, Carvalho RP, Camargo SE, Bazan R, Barretti P, Barreto FC (2016) Enzyme replacement therapy for Anderson–Fabry disease. Cochrane Database Syst Rev 7:CD006663. https://doi.org/10.1002/14651858.CD006663.pub4

    Article  PubMed  Google Scholar 

  48. El Dib R, Gomaa H, Ortiz A, Politei J, Kapoor A, Barreto F (2017) Enzyme replacement therapy for Anderson-Fabry disease: a complementary overview of a Cochrane publication through a linear regression and a pooled analysis of proportions from cohort studies. PLoS ONE 12(3):e0173358. https://doi.org/10.1371/journal.pone.0173358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beck M, Hughes D, Kampmann C, Pintos-Morell G, Ramaswami U, West ML, Giugliani R (2018) Long-term outcomes with agalsidase alfa enzyme replacement therapy: analysis using deconstructed composite events. Mol Genet Metab Rep 14:31–35. https://doi.org/10.1016/j.ymgmr.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  50. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ (2001) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry's disease. N Engl J Med 345(1):9–16. https://doi.org/10.1056/NEJM200107053450102

    Article  CAS  PubMed  Google Scholar 

  51. Hennermann JB, Arash-Kaps L, Fekete G, Schaaf A, Busch A, Frischmuth T (2019) Pharmacokinetics, pharmacodynamics, and safety of moss-aGalactosidase A in patients with Fabry disease. J Inherit Metab Dis 42(3):527–533. https://doi.org/10.1002/jimd.12052

    Article  CAS  PubMed  Google Scholar 

  52. Kizhner T, Azulay Y, Hainrichson M, Tekoah Y, Arvatz G, Shulman A, Ruderfer I, Aviezer D, Shaaltiel Y (2015) Characterization of a chemically modified plant cell culture expressed human alpha-Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab 114(2):259–267. https://doi.org/10.1016/j.ymgme.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  53. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, Feliciani C, Shankar SP, Ezgu F, Amartino H, Bratkovic D, Feldt-Rasmussen U, Nedd K, Sharaf El Din U, Lourenco CM, Banikazemi M, Charrow J, Dasouki M, Finegold D, Giraldo P, Goker-Alpan O, Longo N, Scott CR, Torra R, Tuffaha A, Jovanovic A, Waldek S, Packman S, Ludington E, Viereck C, Kirk J, Yu J, Benjamin ER, Johnson F, Lockhart DJ, Skuban N, Castelli J, Barth J, Barlow C, Schiffmann R (2016) Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med 375(6):545–555. https://doi.org/10.1056/NEJMoa1510198

    Article  CAS  PubMed  Google Scholar 

  54. Schifmann RBD, Germain D et al (2018) Efects of long-term migalastat treatment on renal function by baseline proteinuria in patients with Fabry disease. Nephrol Dial Transplant 33:i346–i347

    Article  Google Scholar 

  55. Platt FM, d'Azzo A, Davidson BL, Neufeld EF, Tifft CJ (2018) Lysosomal storage diseases. Nat Rev Dis Primers 4(1):27. https://doi.org/10.1038/s41572-018-0025-4

    Article  PubMed  Google Scholar 

  56. Kuech EM, Brogden G, Naim HY (2016) Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders. Biochimie 130:152–162. https://doi.org/10.1016/j.biochi.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  57. Marshall J, Ashe KM, Bangari D, McEachern K, Chuang WL, Pacheco J, Copeland DP, Desnick RJ, Shayman JA, Scheule RK, Cheng SH (2010) Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease. PLoS ONE 5(11):e15033. https://doi.org/10.1371/journal.pone.0015033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ashe KM, Budman E, Bangari DS, Siegel CS, Nietupski JB, Wang B, Desnick RJ, Scheule RK, Leonard JP, Cheng SH, Marshall J (2015) Efficacy of enzyme and substrate reduction therapy with a novel antagonist of glucosylceramide synthase for fabry disease. Mol Med 21:389–399. https://doi.org/10.2119/molmed.2015.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guerard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford RWD, Dingemanse J, Wanner C (2018) Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with Fabry disease on enzyme replacement. Clin Pharmacol Ther 103(4):703–711. https://doi.org/10.1002/cpt.790

    Article  CAS  PubMed  Google Scholar 

  60. Deegan PGDP, Goker-Alpan O, Geberhiwot T, Hopkin RJ, Lukina E, Tylki-Szymanska A, Sensinger C, Gaemers S, DasMahapatra P, Modur V, Zaher A, Wilcox W (2019) Three year open label phase 2a investigation of venglustat safety and exploratory efficacy in classic Fabry patients. JIMD 9:O-09

    Google Scholar 

  61. Lee YCS, Li P, Chen Y, Wang S, Liu P, Niu D (2019) Development of a gene therapy for Fabry disease using adeno-associated viral vector mediated gene transfer. JIMD 1:P053

    Google Scholar 

Download references

Acknowledgements

KT is a consultant for Genzyme and has received speaker fees from Genzyme and Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Turkmen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkmen, K., Baloglu, I. Fabry disease: where are we now?. Int Urol Nephrol 52, 2113–2122 (2020). https://doi.org/10.1007/s11255-020-02546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02546-3

Keywords

Navigation