Skip to main content
Log in

Geometric Structures on the Orbits of Loop Diffeomorphism Groups and Related Heavenly-Type Hamiltonian Systems. II

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a review of differential-geometric and Lie-algebraic approaches to the study of a broad class of nonlinear integrable differential systems of “heavenly” type associated with Hamiltonian flows on the spaces conjugated to the loop Lie algebras of vector fields on the tori. These flows are generated by the corresponding orbits of the coadjoint action of the diffeomorphism loop group and satisfy the Lax–Sato-type vector-field compatibility conditions. The corresponding hierarchies of conservation laws and their relationships with Casimir invariants are analyzed. We consider typical examples of these systems and establish their complete integrability by using the developed Lie-algebraic construction. We also describe new generalizations of the integrable dispersion-free systems of heavenly type for which the corresponding generating elements of the orbits have factorized structures, which allows their extension to the multidimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ovsienko and C. Roger, “Looped cotangent Virasoro algebra and non-linear integrable systems in dimension 2+1,Comm. Math. Phys., 273, No. 2, 357–378 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Ovsienko, “Bi-Hamiltonian nature of the equation utx = uxyuy − uyyux,Adv. Pure Appl. Math., 1, No. 1, 7–10 (2008); arXiv:0802.1818v1 (2008).

  3. A. Sergyeyev and B. M. Szablikowski, “Central extensions of cotangent universal hierarchy: (2 + 1)-dimensional bi-Hamiltonian systems,” Phys. Lett. A, 372, No. 47, 7016–7023 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. K. Prykarpatski, O. Ye. Hentosh, and Ya. A. Prykarpatsky, “The differential-geometric and algebraic aspects of the Lax–Sato theory,” Mathematics, 5, No. 4, MDPI, Basel, Switzerland (2017).

  5. O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, and A. K. Prykarpatski, “Dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure,” Symmetry, Integrability, and Geometry: Methods and Appl., 15, Article 079 (2019); https://doi.org/10.3842/SIGMA.2019.079.

  6. O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, and A. K. Prykarpatski, “Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle,” J. Geom. Phys., 120, 208–227 (2017); https://doi.org/10.1016/j.geomphys.2017.06.003.

  7. S. V. Manakov and P. M. Santini, “Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation,” Phys. Lett. A, 359, No. 6, 613–619 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Takasaki and T. Takebe, “SDiff(2) Toda equation – hierarchy, tau function, and symmetries,” Lett. Math. Phys., 23, No. 3, 205–214 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Takasaki and T. Takebe, “Integrable hierarchies and dispersionless limit,” Rev. Math. Phys., 7, No. 5, 743–808 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

  11. D. Blackmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Symplectic Integrability Analysis, World Scientific, Hackensack (2011).

    Book  MATH  Google Scholar 

  12. M. A. Semenov-Tyan-Shanskii, “What is a classical r-matrix?,” Funkts. Anal. Prilozhen., 17, No. 4, 17–33 (1983).

    MathSciNet  Google Scholar 

  13. R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley, Redwood City, CA (1978).

    MATH  Google Scholar 

  14. C. Godbillon, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris (1969).

    MATH  Google Scholar 

  15. M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin (1998).

    Book  MATH  Google Scholar 

  16. L. V. Bogdanov, “Interpolating differential reductions of multidimensional integrable hierarchies,” Teor. Mat. Fiz., 167, No. 3, 705–713 (2011).

    Article  MathSciNet  Google Scholar 

  17. L. V. Bogdanov and B. G. Konopelchenko, “On the heavenly equation and its reductions,” J. Phys. A, 39, 11793–11802 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. V. Bogdanov and M. V. Pavlov, “Linearly degenerate hierarchies of quasiclassical SDYM type,” J. Math. Phys., 58, No. 9, Article 093505 (2017).

  19. B. Doubrov and E. V. Ferapontov, “On the integrability of symplectic Monge–Ampère equations,” J. Geom. Phys., 60, 1604–1616 (2010); arXiv:0910.3407v2 [math.DG] 13 Apr 2010.

  20. E. V. Ferapontov and J. Moss, Linearly Degenerate PDEs and Quadratic Line Complexes; arXiv:1204.2777v1 [math.DG] 12 Apr 2012.

  21. L. Martínez Alonso and A. B. Shabat, “Hydrodynamic reductions and solutions of a universal hierarchy,” Teor. Mat. Fiz., 140, No. 2, 216–229 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya.A. Prykarpatskyy.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, No. 9, pp. 1182–1200, September, 2022. Ukrainian DOI: https://doi.org/10.37863/umzh.v74i9.7234.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hentosh, O.E., Prykarpatskyy, Y., Balinsky, A.A. et al. Geometric Structures on the Orbits of Loop Diffeomorphism Groups and Related Heavenly-Type Hamiltonian Systems. II. Ukr Math J 74, 1348–1368 (2023). https://doi.org/10.1007/s11253-023-02140-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02140-7

Navigation