Skip to main content
Log in

SDiff(2) Toda equation — Hierarchy, Tau function, and symmetries

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A continuum limit of the Toda lattice field theory, called the SDiff(2) Toda equation, is shown to have a Lax formalism and an infinite hierarchy of higher flows. The Lax formalism is very similar to the case of the self-dual vacuum Einstein equation and its hyper-Kähler version, however now based upon a symplectic structure on a cylinderS 1×R. An analogue of the Toda lattice tau function is introduced. The existence of hidden SDiff(2) symmetries are derived from a Riemann-Hilbert problem in the SDiff(2) group. Symmetries of the tau function turn out to have commutator anomalies, hence give a representation of a central extension of the SDiff(2) algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saveliev, M. V. and Vershik, A. M., Continual analogues of contragredient Lie algebras,Comm. Math. Phys. 126, 367–378 (1989).

    Google Scholar 

  2. Bakas, I., The structure of theW algebra.Comm. Math. Phys. 134, 487–508 (1990).

    Google Scholar 

  3. Park, Q-Han, Extended conformal symmetries in real heavens,Phys. Lett. 236B, 429–432 (1990).

    Google Scholar 

  4. Boyer, C. and Finley, J. D., Killing vectors in self-dual, Euclidean Einstein spaces,J. Math. Phys. 23, 1126–1128 (1982).

    Google Scholar 

  5. Gegenberg, J. D. and Das, A., Stationary Riemannian space-times with self-dual curvature,Gen. Relativity Gravitation 16, 817–829 (1984).

    Google Scholar 

  6. Hitchin, N. J., Complex manifolds and Einstein's equations, in H. D.Doebner and T.Weber (eds.),Twistor Geometry and Non-linear Systems, Lecture Notes in Mathematics vol. 970, Springer-Verlag, New York, 1982.

    Google Scholar 

  7. Jones, P. E. and Tod, K. P., Minitwistor spaces and Einstein-Weyl spaces,Classical Quantum Gravity 2, 565–577 (1985).

    Google Scholar 

  8. Ward, R. S., Einstein-Weyl spaces and SU(∞) Toda fieldsClassical Quantum Gravity 7, L95-L98 (1990).

    Google Scholar 

  9. LeBrun, C., Explicit self-dual metrics onCP 2 # ⋯ #CP 2,J. Diff. Geom. (to appear).

  10. Sato, M. and Sato, Y., Soliton equations as dynamical systems in an infinite dimension Grassmann manifold, in P. D.Lax, H.Fujita and G.Strang (eds.),Nonlinear Partial Differential Equations in Applied Sciences, North-Holland, Amsterdam, and Kinokuniya, Tokyo, 1982.

    Google Scholar 

  11. Date, E., Kashiwara, M., Jimbo, M. and Miwa, T., Transformation groups for soliton equations, in M.Jimbo and T.Miwa (eds.),Nonlinear Integrble Systems-Classical Theory and Quantum Theory, World Scientific, Singapore, 1983.

    Google Scholar 

  12. Ueno, K. and Takasaki, K., Toda lattice hierarchy, inGroup Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics vol. 4, Kinokuniya, Tokyo, 1984.

    Google Scholar 

  13. Takebe, T., Toda lattice hierarchy and conservation laws,Comm. Math. Phys. 129, 281–318 (1990).

    Google Scholar 

  14. Takasaki, K., Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy,J. Math. Phys. 31, 1877–1888 (1990).

    Google Scholar 

  15. Kashaev, R. M., Saveliev, M. V., Savelieva, S. A., and Vershik, A. M., On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds, Institute for High Energy Physics preprint 90-I (1990).

  16. Golenisheva-Kutuzova, M. I. and Reiman, A. G., Integrable equations related to Poisson algebras,Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 169, 44 (1988) (in Russian).

    Google Scholar 

  17. Krichever I. M., The dispersionless Lax equations and topological minimal models, preprint (1991).

  18. Penrose, R., Nonlinear gravitons and curved twistor theory,Gen. Relativity Gravitation 7, 31–52 (1976).

    Google Scholar 

  19. Park, Q-Han, Self-dual Yang-Mills (+ gravity) as a 2D sigma model,Phys. Lett. B257, 105–110 (1991).

    Google Scholar 

  20. Takasaki, K., Differential algebras andD-modules in super Toda lattice hierarchy,Lett. Math. Phys. 19, 229–236 (1990).

    Google Scholar 

  21. Arakelyan, T. A. and Savvidy, G. K., Cocycles of area-preserving diffeomorphisms and anomalies in the theory of relativistic surfaces,Phys. Lett. 214B, 350–356 (1988).

    Google Scholar 

  22. Bars, I., Pope, C. N., and Sezgin, E., Central extensions of area preserving membrane algebras,Phys. Lett. 210B, 85–91 (1988).

    Google Scholar 

  23. Floratos, F. G. and Iliopoulos, J., A note on the classical symmetries of the closed bosonic membranes,Phys. Lett. 201B, 237–240 (1988).

    Google Scholar 

  24. Hoppe, J., Diff A T' and the curvature of some infinite dimensional manifolds,Phys. Lett. 215B, 706–710 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasaki, K., Takebe, T. SDiff(2) Toda equation — Hierarchy, Tau function, and symmetries. Lett Math Phys 23, 205–214 (1991). https://doi.org/10.1007/BF01885498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01885498

AMS subject classifications (1991)

Navigation