Skip to main content

Advertisement

Log in

Urban landscapes affect wild bee maternal investment and body size

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urbanization is considered one of the major threats to biodiversity worldwide, with a special concern for native species decline, including wild bees. Through the increase of impervious surfaces, urbanization diminishes, fragments, and warms city environments, significantly reducing nesting and foraging resources for bees. Understanding the response of wildlife to urbanization in terms of reproduction, foraging efficiency, and offspring provisioning is important to species conservation in the face of continued urban development. In this study, we investigated how different levels of urbanization affect individual foraging effort, survival, brood productivity, and fitness in Ceratina calcarata. Our findings show that low urbanization levels favour larger-bodied adults, but foraging efforts (determined by wing wear) were higher at moderate disturbance levels. Larger-bodied mothers produced more numerous offspring (clutch size), mainly in medium disturbance sites. Likewise, larger-bodied mothers produced a larger-bodied offspring at low urbanization levels. Our results indicate that wild bees benefit from low and medium levels of urbanization indicated by maternal and offspring fitness in terms of body size and the number of brood, respectively. This suggests significant effects of urbanization on the fitness and stability of wild bee populations. This study provides novel insights into the impact of urban land use and highlights the importance of conserving and providing green spaces for pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data that support the findings of this study are available upon request.

References

  • Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble bees (Bombus spp) along a gradient of increasing urbanization. PloS One 4(5):e5574

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht M, Duelli P, Schmid B, Mueller CB (2007) Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J Anim Ecol 76(5):1015–1025

    Article  PubMed  Google Scholar 

  • Arsenault SV, Hunt BG, Rehan SM (2018) The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat Commun 9(1):1–9

    Article  CAS  Google Scholar 

  • Ayers AC, Rehan SM (2021) Supporting bees in cities: how bees are influenced by local and landscape features. Insects 12(2):128

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Morse H, Memmott J (2019) A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat Ecol Evol 3(3):363–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldock KC, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc Royal Soc B Biol Sci 282(1803):20142849

    Article  Google Scholar 

  • Banaszak-Cibicka W, Twerd L, Fliszkiewicz M, Giejdasz K, Langowska A (2018) City parks vs. natural areas-is it possible to preserve a natural level of bee richness and abundance in a city park? Urban Ecosyst 21(4):599–613

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences, 110(12), 4656–4660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AB, Lovell S (2019) Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One, 14(2):e0212034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowska J, Pyza E (2011) Effects of heavy metals on insect immunocompetent cells. J Insect Physiol 57(6):760–770

    Article  CAS  PubMed  Google Scholar 

  • Bosch J, Vicens N (2002) Body size as an estimator of production costs in a solitary bee. Ecol Entomol 27(2):129–137

    Article  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22(2):95–102

    Article  PubMed  Google Scholar 

  • Brant RA, Arduser M, Dunlap AS (2022) There must bee a better way: a review of published urban bee literature and suggested topics for future study. Landsc Urban Plann 226:104513

    Article  Google Scholar 

  • Brasil SN, Ayers AC, Rehan SM (2023) The effect of urbanisation and seasonality on wild bee abundance, body size and foraging efforts. Ecologic Entomol 1–9

  • Buchholz S, Egerer MH (2020) Functional ecology of wild bees in cities: towards a better understanding of trait-urbanization relationships. Biodivers Conserv 29(9):2779–2801

    Article  Google Scholar 

  • Cardoso MC, Gonçalves RB (2018) Reduction by half: the impact on bees of 34 years of urbanization. Urban Ecosyst 21(5):943–949

    Article  Google Scholar 

  • Cartar RV (1992) Morphological senescence and longevity: an experiment relating wing wear and life span in foraging wild bumble bees. J Animal Ecol 225–231

  • Chole H, Woodard SH, Bloch G (2019) Body size variation in bees: regulation, mechanisms, and relationship to social organization. Curr Opin Insect Sci 35:77–87

    Article  PubMed  Google Scholar 

  • Daly HV (1966) Biological studies on Ceratina dallatorreana, an alien bee in California which reproduces by parthenogenesis (Hymenoptera: Apoidea). Ann Entomol Soc Am 59(6):1138–1154

    Article  Google Scholar 

  • Ellis EC, Goldewijk K, Siebert K, Lightman S, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19(5):589–606

    Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annual review of ecology, evolution, and systematics, 48:1–23

  • Ferrari A, Polidori C (2022) How city traits affect taxonomic and functional diversity of urban wild bee communities: insights from a worldwide analysis. Apidologie 53(4):1–23

    Article  Google Scholar 

  • Fitch G, Glaum P, Simao MC, Vaidya C, Matthijs J, Iuliano B, Perfecto I (2019) Changes in adult sex ratio in wild bee communities are linked to urbanization. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Fortel L, Henry M, Guilbaud L, Guirao AL, Kuhlmann M, Mouret H, …, Vaissière BE (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9(8):e104679

  • Foster DJ, Cartar RV (2011) What causes wing wear in foraging bumble bees? J Exp Biol 214(11):1896–1901

    Article  PubMed  Google Scholar 

  • Geslin B, Le Féon V, Folschweiller M, Flacher F, Carmignac D, Motard E, …, Dajoz I (2016) The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol Evol 6(18):6599–6615

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulson D, Whitehorn P, Fowley M (2012) Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol Entomol 37(1):83–89

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153(3):589–596

    Article  PubMed  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  CAS  PubMed  Google Scholar 

  • Haas CA, Cartar RV (2008) Robust flight performance of bumble bees with artificially induced wing wear. Can J Zool 86(7):668–675

    Article  Google Scholar 

  • Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Threlfall CG (2017) The city as a refuge for insect pollinators. Conserv Biol 31(1):24–29

    Article  PubMed  Google Scholar 

  • Hamblin AL, Youngsteadt E, Frank SD (2018) Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst 21(3):419–428

    Article  Google Scholar 

  • Hamblin AL, Youngsteadt E, López-Uribe MM, Frank SD (2017) Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol Lett 13(6):20170125

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison T, Gibbs J, Winfree R (2019) Anthropogenic landscapes support fewer rare bee species. Landscape Ecol 34(5):967–978

    Article  Google Scholar 

  • Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of urban bees: a review of current knowledge and directions for future study. Cities and the Environment (CATE), 2(1), 3. Insect Physiol 57(6)760–770

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S, Hothorn MT (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria

  • Kaluza BF, Wallace H, Heard TA, Klein AM, Leonhardt SD (2016) Urban gardens promote bee foraging over natural habitats and plantations. Ecol Evol 6(5):1304–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamm DR (1974) Effects of temperature, day length, and number of adults on the sizes of cells and offspring in a primitively social bee (Hymenoptera: Halictidae). J Kansas Entomol Soc 8–18

  • Kelemen EP, Rehan SM (2021) Opposing pressures of climate and land-use change on a native bee. Glob Change Biol 27(5):1017–1026

    Article  CAS  Google Scholar 

  • Kim JY (1999) Influence of resource level on maternal investment in a leaf-cutter bee (Hymenoptera: Megachilidae). Behav Ecol 10(5):552–556

    Article  Google Scholar 

  • Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Potts SG (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6(1):1–9

    Article  Google Scholar 

  • Kłysik K, Fortuniak K (1999) Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos Environ 33(24–25):3885–3895

    Article  Google Scholar 

  • Land Information Ontario (2019) Ontario Land Cover Compilation v.2.0. Available at: https://www.arcgis.com/home/item.html?id=7aa998fdf100434da27a41f1c637382c. Accessed 6 Aug 2022

  • Larson KL, Fleeger M, Lerman SB, Wheeler MM, Andrade R, Brown JA, Narango DL (2021) Who is abuzz about bees? Explaining residents’ attitudes in Phoenix, Arizona. Urban Ecosyst 24(1):35–48

    Article  Google Scholar 

  • Lawson SP, Ciaccio KN, Rehan SM (2016) Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav Ecol Sociobiol 70(11):1891–1900

    Article  Google Scholar 

  • López-Uribe MM, Oi CA, Del Lama MA (2008) Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie 39(4):410–418

    Article  Google Scholar 

  • McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37(9):L09705

    Article  Google Scholar 

  • McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc Ecol 23(10):1143–1155

    Article  Google Scholar 

  • Mikát M, Benda D, Straka J (2019) Maternal investment in a bee species with facultative nest guarding and males heavier than females. Ecol Entomol 44(6):823–832

    Article  Google Scholar 

  • Mikát M, Franchino C, Rehan SM (2017) Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behav Ecol Sociobiol 71(9):1–10

    Article  Google Scholar 

  • Mueller UG, Wolf-Mueller B (1993) A method for estimating the age of bees: age-dependent wing wear and coloration in the Wool-Carder bee Anthidium manicatum (hymenoptera: Megachilidae). J Insect Behav 6(4):529–537

    Article  Google Scholar 

  • Ne’eman G, Shavit O, Shaltiel L, Shmida A (2006) Foraging by male and female solitary bees with implications for pollination. J Insect Behav 19(3):383–401

    Article  Google Scholar 

  • Nooten SS, Rehan SM (2019) Agricultural land use yields reduced foraging efficiency and unviable offspring in the wild bee Ceratina calcarata. Ecol Entomol 44(4):534–542

    Article  Google Scholar 

  • O’Neill KM, Delphia CM, Pitts-Singer TL (2015) Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size. PeerJ 3:e930

    Article  PubMed  PubMed Central  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  PubMed  Google Scholar 

  • Prendergast KS, Dixon KW, Bateman PW (2021) Interactions between the introduced european honey bee and native bees in urban areas varies by year, habitat type and native bee guild. Biol J Linn Soc 133(3):725–743

    Article  Google Scholar 

  • Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Soc 58(1):31–38

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

  • Rehan SM, Richards MH (2010) The influence of maternal quality on brood sex allocation in the small carpenter bee, Ceratina calcarata. Ethology 116(9):876–887

    Google Scholar 

  • Rehan SM, Richards MH (2010a) Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae). Can Entomol 142(1):65–74

    Article  Google Scholar 

  • Rehan SM, Richards MH, Adams M, Schwarz MP (2014) The costs and benefits of sociality in a facultatively social bee. Anim Behav 97:77–85

    Article  Google Scholar 

  • Renauld M, Hutchinson A, Loeb G, Poveda K, Connelly H (2016) Landscape simplification constrains adult size in a native ground-nesting bee. PLoS One 11(3):e0150946

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts JC, Cartar RV (2015) Shape of wing wear fails to affect load lifting in common eastern bumble bees (Bombus impatiens) with experimental wing wear. Can J Zool 93(7):531–537

    Article  Google Scholar 

  • Roberts SP, Harrison JF, Dudley R (2004) Allometry of kinematics and energetics in carpenter bees (Xylocopa varipuncta) hovering in variable-density gases. J Exp Biol 207(6):993–1004

    Article  PubMed  Google Scholar 

  • Sakagami SF, Maeta Y (1977) Some presumably presocial habits of japanese Ceratina bees, with notes on various social types in Hymenoptera. Insectes Soc 24:319–343

    Article  Google Scholar 

  • Seidelmann K (2018) Optimal resource allocation, maternal investment, and body size in a solitary bee, Osmia bicornis. Entomol Exp Appl 166(9):790–799

    Article  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shell WA, Rehan SM (2016) Recent and rapid diversification of the small carpenter bees in eastern North America. Biol J Linn Soc 117(3):633–645

    Article  Google Scholar 

  • Simkin RD, Seto KC, McDonald RI, Jetz W (2022) Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc Natl Acad Sci 119(12):e2117297119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirohi MH, Jackson J, Edwards M, Ollerton J (2015) Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J Insect Conserv 19(3):487–500

    Article  Google Scholar 

  • Statistics Canada (2016) Toronto [Census metropolitan area], Ontario and Ontario [Province] (table). Census Profile. 2016 Census. Statistics Canada Catalogue no. 98-316-X2016001. Ottawa. Released November 29, 2017. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E. Accessed 14 Aug 2022

  • Svensson JR, Lindegarth M, Jonsson PR, Pavia H (2012) Disturbance–diversity models: what do they really predict and how are they tested?. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2163–2170.

    Article  Google Scholar 

  • Tepedino VJ, Torchio PF (1982) Phenotypic variability in nesting success among Osmia lignaria propinqua females in a glasshouse environment:(Hymenoptera: Megachilidae). Ecol Entomol 7(4):453–462

    Article  Google Scholar 

  • Threlfall CG, Walker K, Williams NS, Hahs AK, Mata L, Stork N, Livesley SJ (2015) The conservation value of urban green space habitats for australian native bee communities. Biol Conserv 187:240–248

    Article  Google Scholar 

  • United Nations (2018) Revision of world urbanization prospects, vol 799. United Nations

  • Vance JT, Roberts SP (2014) The effects of artificial wing wear on the flight capacity of the honeybee Apis mellifera. J Insect Physiol 65:27–36

    Article  CAS  PubMed  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149(2):289–300

    Article  PubMed  Google Scholar 

  • Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2.’ Create elegant data visualisations using the grammar of graphics Version 2(1):1–189

    Google Scholar 

  • Wignall VR, Harry C, Davies I, Kenny NL, McMinn SD, Ratnieks FL (2020) Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia 192(2):351–361

    Article  PubMed  Google Scholar 

  • Wilson CJ, Jamieson MA (2019) The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS One 14(12):e0225852

  • Youngsteadt E, Appler RH, López-Uribe MM, Tarpy DR, Frank SD (2015) Urbanization increases pathogen pressure on feral and managed honey bees. PloS One 10(11):e0142031

    Article  PubMed  PubMed Central  Google Scholar 

  • Zipper SC, Schatz J, Kucharik CJ, Loheide SP (2017) Urban heat island-induced increases in evapotranspirative demand. Geophys Res Lett 44(2):873–881

    Article  Google Scholar 

  • Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79(3):674–681

    Article  PubMed  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143(3):669–676

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Rehan lab for providing valuable feedback on earlier versions of this manuscript. Thanks to Mariam Shamekh and Phuong Nguyen for assistance with nest dissections and processing of bee specimens.

Funding

Funding for this study was provided by NSERC Discovery grants, supplements, and an E.W.R. Steacie Memorial Fellowship to SMR.

Author information

Authors and Affiliations

Authors

Contributions

ACA, JLH and MMRK performed material preparation and data collection. SNRB, MMRK and SMR performed data analysis. SNRB and SMR wrote the manuscript. SMR conceived and funded the study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sandra M. Rehan.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasil, S.N.R., Khair, M., Ayers, A.C. et al. Urban landscapes affect wild bee maternal investment and body size. Urban Ecosyst 26, 1319–1329 (2023). https://doi.org/10.1007/s11252-023-01378-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-023-01378-0

Keywords

Navigation