Skip to main content

Advertisement

Log in

Bumblebees experience landscapes at different spatial scales: possible implications for coexistence

  • Community Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Coexistence in bumblebee communities has largely been investigated at local spatial scales. However, local resource partitioning does not fully explain the species diversity of bumblebee communities. Theoretical studies provide new evidence that partitioning of space can promote species coexistence, when species interact with their environment at different spatial scales. If bumblebee species possess specific foraging ranges, different spatial resource utilisation patterns might operate as an additional mechanism of coexistence in bumblebee communities. We investigated the effects of the landscape-wide availability of different resources (mass flowering crops and semi-natural habitats) on the local densities of four bumblebee species at 12 spatial scales (landscape sectors with 250–3,000 m radius) to indirectly identify the spatial scales at which the bumblebees perceive their environment. The densities of all bumblebee species were enhanced in landscapes with high proportions of mass flowering crops (mainly oilseed rape). We found the strongest effects for Bombus terrestris agg. and Bombus lapidarius at large spatial scales, implying foraging distances of 3,000 and 2,750 m, respectively. The densities of Bombus pascuorum were most strongly influenced at a medium spatial scale (1,000 m), and of Bombus pratorum (with marginal significance) at a small spatial scale (250 m). The estimated foraging ranges tended to be related to body and colony sizes, indicating that larger species travel over larger distances than smaller species, presumably enabling them to build up larger colonies through a better exploitation of food resources. We conclude that coexistence in bumblebee communities could potentially be mediated by species-specific differences in the spatial resource utilisation patterns, which should be considered in conservation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–h
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alford DV (1975) Bumblebees. Davis-Poynter, London

    Google Scholar 

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Bäckman J-PC, Tiainen J (2002) Habitat quality of field margins in a Finnish farmland area for bumblebees (Hymenoptera: Bombus and Psithyrus). Agric Ecosyst Environ 89:53–68

    Article  Google Scholar 

  • Basset A (1995) Body size-related coexistence: an approach through allometric constraints on home-range use. Ecology 76:1027–1035

    Article  Google Scholar 

  • Bowers MA (1985a) Experimental analyses of competition between two species of bumble bees (Hymenoptera: Apidae). Oecologia 67:224–230

    Article  Google Scholar 

  • Bowers MA (1985b) Bumble bee colonization, and reproduction in subalpine meadows in Northeastern Utah. Ecology 66:914–927

    Article  Google Scholar 

  • Brian AD (1957) Differences in the flowers visited by four species of bumble-bees and their causes. J Anim Ecol 26:71–98

    Article  Google Scholar 

  • Bronstein JL (1995) The plant-pollinator landscape. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman & Hall, London, pp 256–288

    Google Scholar 

  • Brown JS, Kotler BP, Mitchell WA (1994) Foraging theory, patch use and the structure of a Negev Desert granivore community. Ecology 75:2286–2300

    Article  Google Scholar 

  • Carvell C, Meek WR, Pywell RF, Nowakowski M (2004) The response of foraging bumblebees to successional change in newly created arable field margins. Biol Conserv 118:327–339

    Article  Google Scholar 

  • Chapman RE, Wang J, Bourke AFG (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Mol Ecol 12:2801–2808

    Article  PubMed  CAS  Google Scholar 

  • Chase JM, Wilson WG, Richards SA (2001) Foraging trade-offs and resource patchiness: theory and experiments with a freshwater snail community. Ecol Lett 4:304–312

    Article  Google Scholar 

  • Corbet SA (2000) Conserving compartments in pollination webs. Conserv Biol 14:1229–1231

    Article  Google Scholar 

  • Cresswell JE, Osborne JL, Goulson D (2000) An economic model of the limits to foraging range in central place foragers with numerical solutions for bumblebees. Ecol Entomol 25:249–255

    Article  Google Scholar 

  • Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107:471–478

    Article  Google Scholar 

  • Dornhaus A, Chittka L (1999) Evolutionary origins of bee dances. Nature 401:38

    Article  CAS  Google Scholar 

  • Dornhaus A, Chittka L (2001) Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behav Ecol Sociobiol 50:570–576

    Article  Google Scholar 

  • Dramstad W (1996) Do bumblebees (Hymenoptera: Apidae) really forage close to their nests? J Insect Behav 9:163–182

    Article  Google Scholar 

  • Dramstad W, Fry G (1995) Foraging activity of bumblebees (Bombus) in relation to flower resources on arable land. Agric Ecosyst Environ 53:123–135

    Article  Google Scholar 

  • Dukas R, Edelstein-Keshet L (1998) The spatial distribution of colonial food provisioners. J Theor Biol 190:121–134

    Article  Google Scholar 

  • Free JB, Ferguson AW (1980) Foraging of bees on oil-seed rape (Brassica napus L.) in relation to the stage of flowering and pest control. J Agric Sci Camb 94:151–154

    Article  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • Goulson D (2003) Bumblebees. Behaviour and ecology. Oxford University Press, New York

    Google Scholar 

  • Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32:105–111

    Article  Google Scholar 

  • von Hagen E (1994) Hummeln: bestimmen, ansiedeln, vermehren, schützen, 4th edn. Naturbuch Verlag, Augsburg

    Google Scholar 

  • Hamilton WJ, Watt KE (1970) Refuging. Annu Rev Ecol Evol 1:263–286

    Article  Google Scholar 

  • Harder LD (1985) Morphology as a predictor of flower choice by bumble bees. Ecology 66:198–210

    Article  Google Scholar 

  • Hartley S, Kunin WE (2003) Scale dependency of rarity, extinction risk, and conservation priority. Conserv Biol 17:1559–1570

    Article  Google Scholar 

  • Hedtke C (1994) Heimfindevermögen von Hummeln. In: Hedtke C (ed) Wildbienen. Länderinstitut für Bienenkunde Hohen Neuendorf, Lehnitz/Hohen Neuendorf, pp 113–123

  • Heinrich B (1976a) The foraging specializations of individual bumblebees. Ecol Monogr 46:105–128

    Article  Google Scholar 

  • Heinrich B (1976b) Resource partitioning among some eusocial insects: bumblebees. Ecology 57:874–889

    Article  Google Scholar 

  • Heinrich B (1979) Bumblebee Economics, 1st edn. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Hill PSM, Hollis J, Wells H (2001) Foraging decisions in nectarivores: unexpected interactions between flower constancy and energetic rewards. Anim Behav 62:729–737

    Article  Google Scholar 

  • Inouye DW (1978) Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59:672–678

    Article  Google Scholar 

  • Johnson LK, Hubbell SP (1975) Contrasting foraging strategies and coexistence of two bee species on a single resource. Ecology 56:1398–1406

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Evol 29:83–112

    Article  Google Scholar 

  • Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol Conserv 109:165–174

    Article  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80

    Article  Google Scholar 

  • Kotler BP, Brown JS (1988) Environmental heterogeneity and the coexistence of desert rodents. Annu Rev Ecol Evol 19:281–307

    Article  Google Scholar 

  • Mauss V (1996) Bestimmungsschlüssel für Hummeln, 6th edn. Deutscher Jugendbund für Naturbeobachtung, Hamburg

    Google Scholar 

  • Mauss V, Schindler M (2002) Hummeln (Hymenoptera, Apidae, Bombus) auf Magerrasen (Mesobromion) der Kalkeifel: Diversität, Schutzwürdigkeit und Hinweise zur Biotoppflege. Nat Landsch 77:485–492

    Google Scholar 

  • Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate diversity. Biol Conserv 106:259–271

    Article  Google Scholar 

  • Morse DH (1977) Resource partitioning in bumble bees: the role of behavioral factors. Science 197:678–680

    Article  PubMed  Google Scholar 

  • van Nieuwstadt MLG, Iraheta CER (1996) Relation between size and foraging range in stingless bees (Apidae, Meliponinae). Apidologie 27:219–228

    Article  Google Scholar 

  • Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora, 7th edn. Ulmer, Stuttgart

    Google Scholar 

  • Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds DR, Edwards AS (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533

    Article  Google Scholar 

  • Palmer TM, Stanton ML, Young TP (2003) Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. Am Nat 162:S63–S79

    Article  PubMed  Google Scholar 

  • Pekkarinen A (1984) Resource partitioning and coexistence in bumblebees (Hymenoptera, Bombinae). Ann Entomol Fenn 50:97–107

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, New York

    Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Ranta E (1982) Species structure of north European bumblebee communities. Oikos 38:202–209

    Article  Google Scholar 

  • Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35:298–302

    Article  Google Scholar 

  • Ranta E, Vepsäläinen K (1981) Why are there so many species? Spatio-temporal heterogeneity and northern bumblebee communities. Oikos 36:28–34

    Article  Google Scholar 

  • Ritchie ME, Olff H (1999) Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400:557–560

    Article  PubMed  CAS  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–713

    Article  CAS  Google Scholar 

  • Schaffer WM, Jensen DB, Hobbs DE (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60:976–987

    Article  Google Scholar 

  • Schmid-Hempel P, Müller C, Schmid-Hempel R, Shykoff JA (1990) Frequency and ecological correlates of parasitism by Conopid flies (Conopidae, Diptera) in populations of bumblebees. Insect Soc 37:14–30

    Article  Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    Article  PubMed  Google Scholar 

  • Sowig P (1989) Effects of flowering plant’s patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia 78:550–558

    Article  Google Scholar 

  • Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B Biol 270:569–575

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Svensson B, Langerlöf J, Svensson BG (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agric Ecosyst Environ 77:247–255

    Article  Google Scholar 

  • Teräs I (1985) Food plants and flower visits of bumblebees (Bombus: Hymenoptera, Apidae) in southern Finland. Acta Zool Fenn 179:1–120

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., Apidae), in an agricultural landscape. J Appl Entomol 124:299–306

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965

    Article  Google Scholar 

  • Williams CS (1995) Conserving Europe’s bees: why all the buzz? Trends Ecol Evol 10:309–310

    Article  Google Scholar 

  • Williams IH, Christian DG (1991) Observations on Phacelia tanacetifolia Bentham (Hydrophyllaceae) as a food plant for honey bees and bumble bees. J Apicult Res 30:3–12

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, N.J.

    Google Scholar 

Download references

Acknowledgements

We are grateful to J. Bronstein, T. Palmer, N. Waser, W. Kunin, and two anonymous referees for comments on earlier versions of this manuscript, R. Trilck, M. Pauly, and H. Westphal for assistance in the field, C. Bürger for supporting GIS analyses, and the 16 farmers for providing the field sites. This work was supported by the Scholarship Program of the German Federal Environmental Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catrin Westphal.

Additional information

Communicated by Wolkmar Wolters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia 149, 289–300 (2006). https://doi.org/10.1007/s00442-006-0448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0448-6

Keywords

Navigation