Skip to main content
Log in

Identification of hub genes associated with somatic cell score in dairy cow

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Context

Somatic cell count (SCC) is used as an indicator of udder health. The log transformation of SCC is called somatic cell score (SCS).

Aim

Several QTL and genes have been identified that are associated with SCS. This study aimed to identify the most important genes associated with SCS.

Methods

This study compiled 168 genes that were reported to be significantly linked to SCS. Pathway analysis and network analysis were used to identify hub genes.

Key results

Pathway analysis of these genes identified 73 gene ontology (GO) terms associated with SCS. These GO terms are associated with molecular function, biological processes, and cellular components, and the identified pathways are directly or indirectly linked with the immune system. In this study, a gene network was constructed, and from this network, the 17 hub genes (CD4, CXCL8, TLR4, STAT1, TLR2, CXCL9, CCR2, IGF1, LEP, SPP1, GH1, GHR, VWF, TNFSF11, IL10RA, NOD2, and PDGFRB) associated to SCS were identified. The subnetwork analysis yielded 10 clusters, with cluster 1 containing all identified hub genes (except for the VWF gene).

Conclusion

Most hub genes and pathways identified in our study were mainly involved in inflammatory and cytokine responses.

Implications

Result obtained in current study provides knowledge of the genetic basis and biological mechanisms controlling SCS. Therefore, the identified hub genes may be regarded as the main gene for the genomic selection of mastitis resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All genes used in this study were extracted from (https://www.animalgenome.org/cgi-bin/QTLdb/BT/gene%20srch?gwords).

References

  • Abebe, R., Hatiya, H., Abera, M., Megersa, B. & Asmare, K., 2016. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC veterinary research, 12(1), 1-11.

    Article  Google Scholar 

  • Alain, K., Karrow, N.A., Thibault, C., St-Pierre, J., Lessard, M. & Bissonnette, N., 2009. Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC genomics, 10(1),1-17.

    Article  Google Scholar 

  • Ali, A.K.A. & Shook, G.E., 1980. Heritability and repeatability of somatic cell concentration in milk. Journal of Dairy Science, 63(1), 1-1.

  • Baatar, D., Patel, K. & Taub, D.D., 2011. The effects of ghrelin on inflammation and the immune system. Molecular and cellular endocrinology, 340(1), 44-58.

    Article  CAS  PubMed  Google Scholar 

  • Bakos, E., Thaiss, C.A., Kramer, M.P., Cohen, S., Radomir, L., Orr, I., Kaushansky, N., Ben-Nun, A., Becker-Herman, S. & Shachar, I., 2017. CCR2 regulates the immune response by modulating the interconversion and function of effector and regulatory T cells. The Journal of Immunology, 198(12),4659-4671.

    Article  CAS  PubMed  Google Scholar 

  • Boichard, D., Ducrocq, V., Croiseau, P., & Fritz, S. 2016. Genomic selection in domestic animals: principles, applications and perspectives. Comptes rendus biologies, 339(7-8), 274-277.

    Article  PubMed  Google Scholar 

  • Brennan, K. & Zheng, J., 2007. Interleukin 8. In xPharm: the comprehensive pharmacology reference, 8, 1-4. 

  • Carlen, E., Strandberg, E. & Roth, A., 2004. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. Journal of dairy science, 87(9),3062-3070.

    Article  CAS  PubMed  Google Scholar 

  • Cates, E.A., Connor, E.E., Mosser, D.M. & Bannerman, D.D., 2009. Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-κB activation and apoptosis. Comparative immunology, microbiology and infectious diseases, 32(6), 477-490.

    Article  PubMed  Google Scholar 

  • Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T. & Lin, C.Y., 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC systems biology, 8(4), 1-7.

    Google Scholar 

  • Cobirka, M., Tancin, V. & Slama, P., 2020. Epidemiology and classification of mastitis. Animals, 10(2212), 1-17.

    Google Scholar 

  • Cole, J.B., Wiggans, G.R., Ma, L., Sonstegard, T.S., Lawlor, T.J., Crooker, B.A., Van Tassell, C.P., Yang, J., Wang, S., Matukumalli, L.K. & Da, Y., 2011. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary US Holstein cows. BMC genomics, 12(1),1-17.

    Article  Google Scholar 

  • Donat, C., Thanei, S. & Trendelenburg, M., 2019. Binding of von Willebrand Factor to complement C1q decreases the phagocytosis of cholesterol crystals and subsequent IL-1 secretion in macrophages. Frontiers in Immunology, 10, 1-11.

    Article  Google Scholar 

  • Doncheva, N.T., Morris, J.H., Gorodkin, J. & Jensen, L.J., 2018. Cytoscape StringApp: network analysis and visualization of proteomics data. Journal of proteome research, 18(2), 623-632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmaghraby, M.M., El-Nahas, A.F., Fathala, M.M., Sahwan, F.M. & El-Dien, M.T., 2018. Association of toll-like receptors 2 and 6 polymorphism with clinical mastitis and production traits in Holstein cattle. Iranian Journal of Veterinary Research, 19(3), 1-19.

    Google Scholar 

  • Forte, D., García-Fernández, M., Sánchez-Aguilera, A., Stavropoulou, V., Fielding, C., Martín-Pérez, D., López, J.A., Costa, A.S., Tronci, L., Nikitopoulou, E. & Barber, M., 2020. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell metabolism, 32(5), 829-843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Campos, M.A., Espinal-Enríquez, J. & Hernández-Lemus, E., 2015. Pathway analysis: state of the art. Frontiers in physiology, 6, 1-16.

    Article  Google Scholar 

  • Gong, T., Xuan, J., Wang, C., Li, H., Hoffman, E., Clarke, R. & Wang, Y., 2007. Gene module identification from microarray data using nonnegative independent component analysis. Gene Regulation and Systems Biology, 1, 349-363.

    Article  Google Scholar 

  • Günther, J., Liu, S., Esch, K., Schuberth, H.J. & Seyfert, H.M., 2010. Stimulated expression of TNF-α and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells. Veterinary immunology and immunopathology, 135(1-2), 152-157.

    Article  PubMed  Google Scholar 

  • Hu, Z.L., Park, C.A. & Reecy, J.M., 2022. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic acids research, 50(D1), 956-961.

    Article  Google Scholar 

  • Idriss, H.T. & Naismith, J.H., 2000. TNFα and the TNF receptor superfamily: Structure-function relationship (s). Microscopy research and technique, 50(3), 184-195.

    Article  CAS  PubMed  Google Scholar 

  • Jain, N.C., 1979. Common mammary pathogens and factors in infection and mastitis. Journal of Dairy Science, 62(1),128-134.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki, T. & Kawai, T., 2014. Toll-like receptor signaling pathways. Frontiers in immunology, 5, 1-8.

  • Khan, M.Z., Khan, A., Xiao, J., Ma, Y., Ma, J., Gao, J. & Cao, Z., 2020. Role of the JAK-STAT pathway in bovine mastitis and milk production. Animals, 10(11), 1-16.

    Article  Google Scholar 

  • Kim, S., Lim, B., Cho, J., Lee, S., Dang, C.G., Jeon, J.H., Kim, J.M. & Lee, J., 2021. Genome-wide identification of candidate genes for milk production traits in Korean Holstein Cattle. Animals 11(5), 1392-1405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucera, M., Isserlin, R., Arkhangorodsky, A. & Bader, G.D., 2016. AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations. F1000Research 5, 1-12.

    Article  Google Scholar 

  • Li, M., Wei, H., Zhong, S., Cheng, Y., Wen, S., Wang, D. & Shu, Y., 2021. Association of Single Nucleotide Polymorphisms in LEP, LEPR, and PPARG With Humoral Immune Response to Influenza Vaccine. Frontiers in genetics 12,1-9

    Google Scholar 

  • Li, N., Richoux, R., Boutinaud, M., Martin, P. & Gagnaire, V., 2014. Role of somatic cells on dairy processes and products: a review. . Dairy science & technology 94(6), 517-538.

    Article  CAS  Google Scholar 

  • Li, T., Gao, X., Han, L., Yu, J. & Li, H., 2018. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis. World journal of surgical oncology 16(1), 1-12.

    Google Scholar 

  • Liu Liu, S., Zeng, F., Fan, G. & Dong, Q., 2021. Identification of hub genes and construction of a transcriptional regulatory network associated with tumor recurrence in colorectal cancer by weighted gene co-expression network analysis. Frontiers in genetics 12, 1-14.

    Google Scholar 

  • Marete, A., Sahana, G., Fritz, S., Lefebvre, R., Barbat, A., Lund, M.S., Guldbrandtsen, B. & Boichard, D., 2018. Genome-wide association study for milking speed in French Holstein cows. Journal of dairy science 101(7), 6205-6219.

    Article  CAS  PubMed  Google Scholar 

  • Meazza, C., Pagani, S., Travaglino, P. & Bozzola, M., 2004. Effect of growth hormone (GH) on the immune system. . Pediatric Endocrinology Reviews 1, 1-21.

    Google Scholar 

  • Mesquita, A.Q.D., Mesquita, A.J.D., Jardim, E.A.G.D.V. & Kipnis, A.P.J., 2012. Association of TLR4 polymorphisms with subclinical mastitis in Brazilian holsteins. Brazilian Journal of Microbiology 43(2), 692-697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miglior, F., Muir, B. L., & Van Doormaal, B.J , 2005. Selection indices in Holstein cattle of various countries. Journal of dairy science, 88(3), 1255-1263.

    Article  CAS  PubMed  Google Scholar 

  • Moretti, R., Soglia, D., Chessa, S., Sartore, S., Finocchiaro, R., Rasero, R. & Sacchi, P., 2021. Identification of SNPs associated with somatic cell score in candidate genes in Italian Holstein Friesian bulls. Animals 11(2), 1-11.

    Article  Google Scholar 

  • Mullen, M.P., Berry, D.P., Howard, D.J., Diskin, M.G., Lynch, C.O., Berkowicz, E.W., Magee, D.A., MacHugh, D.E. & Waters, S.M., 2010. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. Journal of dairy science 93(12), 5959-5969.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, M.P., Berry, D.P., Howard, D.J., Diskin, M.G., Lynch, C.O., Giblin, L., Kenny, D.A., Magee, D.A., Meade, K.G. & Waters, S.M., 2011. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1) gene are associated with performance in Holstein-Friesian dairy cattle. Frontiers in genetics 2, 1-9.

    Article  Google Scholar 

  • Napolitano, L.A., Schmidt, D., Gotway, M.B., Ameli, N., Filbert, E.L., Ng, M.M., Clor, J.L., Epling, L., Sinclair, E., Baum, P.D. & Li, K., 2008. Growth hormone enhances thymic function in HIV-1–infected adults. The Journal of clinical investigation 118(3), 1085-1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquin, S., Sharma, M. & Gauchat, J.F., 2015. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine & growth factor reviews 26(5), 507-515.

    Article  CAS  Google Scholar 

  • Ragland, S.A. & Criss, A.K., 2017. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS pathogens 13(9), 1-22.

    Article  Google Scholar 

  • Rupp, R. & Boichard, D., 1999. Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. Journal of dairy science 82(10), 2198-2204.

    Article  CAS  PubMed  Google Scholar 

  • Russo, R.C., Garcia, C.C., Teixeira, M.M. & Amaral, F.A., 2014. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert review of clinical immunology 10(5), 593-619.

    Article  CAS  PubMed  Google Scholar 

  • Safari, R., Hoseinifar, S.H. & Dadar, M., 2021. Enrichment of common carp (Cyprinus carpio) diet with malic acid: Effects on skin mucosal immunity, antioxidant defecne and growth performance. Annals of Animal Science 21(2),561-573.

    Article  CAS  Google Scholar 

  • Schwarz, D., Santschi, D.E., Durocher, J. & Lefebvre, D.M., 2020. Evaluation of the new differential somatic cell count parameter as a rapid and inexpensive supplementary tool for udder health management through regular milk recording. Preventive Veterinary Medicine 181, 1-12.

    Article  Google Scholar 

  • Seegers, H., Fourichon, C. & Beaudeau, F., 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary research 34(5), 475-491.

    Article  PubMed  Google Scholar 

  • Seo, C.H., Kim, J.R., Kim, M.S. & Cho, K.H., 2009. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 25(15), 1898-1904.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13(11), 2498-2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, N., Singh, N.K. & Bhadwal, M.S., 2011. Relationship of somatic cell count and mastitis: An overview. Asian-Australasian Journal of Animal Sciences, 24(3), 429-438.

    Article  Google Scholar 

  • Shouval, D.S., Biswas, A., Goettel, J.A., McCann, K., Conaway, E., Redhu, N.S., Mascanfroni, I.D., Al Adham, Z., Lavoie, S., Ibourk, M. & Nguyen, D.D., 2014. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40(5), 706-719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, T.J., 2010. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacological reviews 62(2), 199-236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzeng, H.T., Chyuan, I.T. & Chen, W.Y., 2019. Shaping of innate immune response by fatty acid metabolite palmitate. Cells 8,1-15.

    Article  Google Scholar 

  • Usman, T., Wang, Y., Song, M., Wang, X., Dong, Y., Liu, C., Wang, S., Zhang, Y., Xiao, W. and Yu, Y., 2018. Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. Genetics and Molecular Research, 17(1), 1-8.

    Google Scholar 

  • Vaure, C. & Liu, Y., 2014. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in immunology 5, 1-15.

    Article  CAS  Google Scholar 

  • Verschoor, C.P., Pant, S.D., Schenkel, F.S., Sharma, B.S. & Karrow, N.A., 2009. SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls. Mammalian Genome 20(7), 447-454.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Liu, L., Augustino, S., Duan, T., Hall, T.J., MacHugh, D.E., Dou, J., Zhang, Y., Wang, Y. & Yu, Y., 2020. Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. Journal of animal science and biotechnology 11(1), 1-17.

    Article  Google Scholar 

  • Wei, Z., Xu, Y., Xu, Q., Cao, W., Huang, H. & Liu, H., 2021. Microbial Biosynthesis of L-Malic Acid & Related Metabolic Engineering Strategies: Advances and Prospects. Frontiers in Bioengineering and Biotechnology 9,1-14.

    Article  Google Scholar 

  • Wu, X., Al Hasan, M. & Chen, J.Y., 2014. Pathway and network analysis in proteomics. Journal of theoretical biology 362, 44-52.

    Article  CAS  PubMed  Google Scholar 

  • Zeb, S., Ali, N., Niaz, S., Rasheed, A., Khattak, I., Khan, N.U., Wang, Y. & Usman, T., 2020. Association of SNPs in the coding regions of CD4 gene with mastitis susceptibility and production traits in dairy cattle. The Thai Journal of Veterinary Medicine, 50(1), 75-80.

    Article  Google Scholar 

  • Zheng, Y., Hao, S., Xiang, C., Han, Y., Shang, Y., Zhen, Q., Zhao, Y., Zhang, M. & Zhang, Y., 2021. The correlation between SPP1 and immune escape of EGFR mutant lung adenocarcinoma was explored by bioinformatics analysis. Frontiers in Oncology, 11,1-10.

    Google Scholar 

  • Zhou, X., Zhu, X. & Zeng, H., 2021. Fatty acid metabolism in adaptive immunity. The FEBS journal, 290(3), 584-599.

Download references

Acknowledgements

The authors would like to acknowledge the Payame Noor University for financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

HG and MK contributed to conceptualization, methodology and reviewed and edited the final manuscript, RT contributed to revision and edited the final manuscript.

Corresponding author

Correspondence to Heydar Ghiasi.

Ethics declarations

Ethical approval

This is an observational study. The XYZ Research Ethics Committee has confirmed that no ethical approval is required

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, H., Khaldari, M. & Taherkhani, R. Identification of hub genes associated with somatic cell score in dairy cow. Trop Anim Health Prod 55, 349 (2023). https://doi.org/10.1007/s11250-023-03766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03766-2

Keywords

Navigation