Skip to main content
Log in

Effect of Different Kinds of Fillers on the Terrace-Like Structure of the Transfer Film and the Wear Behavior of the PTFE-Based Composites

  • Research
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

It was found that the transfer film of SiO2/Polytetrafluoroethylene (PTFE) composite had terrace-like structure that affected the tribological properties in our previous work. Interestingly, the thickness of the different layers in this morphology was approximately equal, and the coverage rate of the different layers decreased with the increase of the number of layers. It is unknown whether this morphology exists in PTFE composites filled with other types of fillers. Especially, little is known about the influence of the different kinds of fillers on the morphology of the transfer film. In this paper, the effects of three different kinds of fillers, Polyetheretherketone (PEEK), WS2, and Si3N4, on the morphology of the transfer film were studied. The results showed that the transfer films of all the PTFE composites had terrace-like structure with a single layer of approximately the same thickness independent of the filler type. The effect of filler type on the number of layers was significant. The number of layers of the transfer film of PEEK/PTFE composite was the largest (4 layers) and that of WS2/PTFE composite was the smallest (1 layers). The wear resistance of the PTFE composites was independent of the monolayer thickness but increased with the number of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006). https://doi.org/10.1016/j.wear.2005.06.009

    Article  CAS  Google Scholar 

  2. Ye, J., Burris, D., Xie, T.: A review of transfer films and their role in ultra-low-wear sliding of polymers. Lubricants 4, 4 (2016). https://doi.org/10.3390/lubricants4010004

    Article  Google Scholar 

  3. Qian, M., Song, P., Qin, Z., Yan, S.Z., Zhang, L.: Mechanically robust and abrasion-resistant polymer nanocomposites for potential applications as advanced clearance joints. Compos. Appl. Sci. Manuf. 126, 105607 (2019). https://doi.org/10.1016/j.compos-itesa.2019.105607

    Article  CAS  Google Scholar 

  4. Sahli, M., Cable, A., Chetehouna, K., Hamamda, S., Gascoin, N., Revo, S.: Preparation and characterization of polytetrafluoroethylene (PTFE)/thermally expanded graphite (TEG) nanocomposites. Compos. B 124, 175–181 (2017). https://doi.org/10.1016/j.composite-sb.2017.05.046

    Article  CAS  Google Scholar 

  5. Peng, S., Zhang, L., Xie, G., Guo, Y., Si, L., Luo, J.: Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate). Compos. B 172, 316–322 (2019). https://doi.org/10.1016/j.compositesb.2019.04.047

    Article  CAS  Google Scholar 

  6. Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006). https://doi.org/10.1016/j.wear.2005.12.016

    Article  CAS  Google Scholar 

  7. Li, F., Hu, K., Li, J., Zhao, B.: The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249, 877–882 (2002). https://doi.org/10.1016/S00431648(01)00816-X

    Article  Google Scholar 

  8. Xu, J., Yan, H., Gu, D.: Friction and wear behavior of polytetrafluoroethene composites filled with Ti3SiC2. Mater. Design 61, 270–274 (2014). https://doi.org/10.1016/j.matdes.2014.04.069

    Article  CAS  Google Scholar 

  9. Gu, D., Liu, S., Chen, S., Song, K., Yang, B., Pan, D.: Tribological performances of Si3N4-PTFE composites prepared by high pressure compression molding. Tribol. Trans. 63, 756–769 (2020). https://doi.org/10.1080/10402004.2020.1742407

    Article  CAS  Google Scholar 

  10. Conte, M., Igartua, A.: Study of PTFE composites tribological behavior. Wear 296, 568–574 (2012). https://doi.org/10.1016/j.wear.2012.08.015

    Article  CAS  Google Scholar 

  11. Johansson, P., Marklund, P., Björling, M., Shi, Y.: Effect of humidity and counterface material on the friction and wear of carbon fiber reinforced PTFE composites. Tribol. Int. 157, 106869 (2021). https://doi.org/10.1016/j.triboint.2021.106869

    Article  CAS  Google Scholar 

  12. Shi, Y., Feng, X., Wang, H., Lu, X.: The effect of surface modification on the friction and wear behavior of carbon nanofiber-filled PTFE composites. Wear 264, 934–939 (2008). https://doi.org/10.1016/j.wear.2007.06.014

    Article  CAS  Google Scholar 

  13. Klaas, N., Marcus, K., Kellock, C.: The tribological behaviour of glass filled polytetrafluoroethylene. Tribol. Int. 38, 824–833 (2005). https://doi.org/10.1016/j.triboin-t.2005.02.010

    Article  CAS  Google Scholar 

  14. Fan, X., Li, G., Guo, Y., Zhang, L., Xu, Y., Zhao, F., Zhang, G.: Role of reinforcement types and silica nanoparticles on tribofilm growth at PTFE-steel interface. Tribol. Int. 143, 106035 (2020). https://doi.org/10.1016/j.triboint.2019.106035

    Article  CAS  Google Scholar 

  15. Xie, T., Shi, Y.: Effects of LaF3/CeF3 on the friction transfer of PTFE-based composites. Tribol. Int. 161, 107069 (2021). https://doi.org/10.1016/j.triboint.2021.107069

    Article  CAS  Google Scholar 

  16. Khedar, J., Negulescu, I., Meletis, E.: Sliding wear behavior of PTFE composites. Wear 252, 361–369 (2002). https://doi.org/10.1016/S0043-1648(01)00859-6

    Article  Google Scholar 

  17. Tanaka, K., Kawakami, S.: Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites. Wear 79, 221–234 (1982). https://doi.org/10.1016/0043-1648(82)90170-3

    Article  CAS  Google Scholar 

  18. Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984). https://doi.org/10.1016/0043-1648(84)90213-8

    Article  CAS  Google Scholar 

  19. Blanchet, T., Kennedy, F.: Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992). https://doi.org/10.1016/0043-1648(92)90271-9

    Article  CAS  Google Scholar 

  20. Briscoe, B.: Wear of polymers-an essay on fundamental-aspects. Tribol. Int. 14, 231–243 (1981). https://doi.org/10.1016/0301-679X(81)90050-5

    Article  CAS  Google Scholar 

  21. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–153 (2005). https://doi.org/10.1080/05698190590923842

    Article  CAS  Google Scholar 

  22. Bahadur, S.: The development of transfer layers and their role in polymer tribology. Wear 245, 92–99 (2000). https://doi.org/10.1016/S0043-1648(00)00469-5

    Article  CAS  Google Scholar 

  23. Zhang, L., Xie, T., Chen, K., Li, W.: Observation and analysis of the terrace-like structured transfer film of SiO2/PTFE composites. Tribol. Int. 170, 107526 (2022). https://doi.org/10.1016/j.tri-boint.2022.107526

    Article  CAS  Google Scholar 

  24. Wang, Y., Yan, F.: Tribological properties of transfer films of PTFE-based composites. Wear 261, 1359–1366 (2006). https://doi.org/10.1016/j.wear.2006.03.050

    Article  CAS  Google Scholar 

  25. Xie, T., Zhou, Z., Xu, Z., Yu, J., Jiao, M.: Characteristics of the transfer film and tribological properties of Oxide/PTFE composites. Adv. Mater. Res. 631, 172–175 (2013). https://doi.org/10.4028/www.scientific.net/AMR.631-632.172

    Article  CAS  Google Scholar 

  26. Onodera, T., Nunoshige, J., Kawasaki, K., Kawasaki, K., Adachi, K., Kurihara, K., Kubo, M.: Structure and function of transfer film formed from PTFE/PEEK polymer blend. J. Phys. Chem. C 121, 14589–14596 (2017). https://doi.org/10.1021/acs.jpcc.7b02860

    Article  CAS  Google Scholar 

  27. Laux, K., Schwartz, C.: Influence of linear reciprocating and multi-directional sliding on PEEK wear performance and transfer film formation. Wear 301, 727–734 (2013). https://doi.org/10.1016/j.wear.2012.12.004

    Article  CAS  Google Scholar 

  28. Shi, G., Zhang, M., Rong, M., Wetzel, B., Friedrich, K.: Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear 254, 784–796 (2003). https://doi.org/10.1016/S0043-1648(03)00190-X

    Article  CAS  Google Scholar 

  29. Li, H., Yin, Z., Jiang, D., Huo, Y., Cui, Y.: Tribological behavior of hybrid PTFE/Kevlar fabric composites with nano-Si3N4 and submicron size WS2 fillers. Tribol. Int. 80, 172–178 (2014). https://doi.org/10.1016/j.triboint.2014.07.006

    Article  CAS  Google Scholar 

  30. Kalin, M., Zalaznik, M., Novak, S.: Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear 332–333, 855–862 (2015). https://doi.org/10.1016/j.wear.2014.12.036

    Article  CAS  Google Scholar 

  31. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., Tenne, R.: Friction and wear of powdered composites impregnated with WS2 inorganic fullerene-like nanoparticles. Wear 252, 518–527 (2002). https://doi.org/10.1016/S0043-1648(02)00004-2

    Article  CAS  Google Scholar 

  32. Alam, K.I., Baratz, A., Burris, D.L.: Leveraging trace nanofillers to engineer ultra-low wear polymer surfaces. Wear 482–483, 203965 (2021). https://doi.org/10.1016/j.wear.2021.203965

    Article  CAS  Google Scholar 

  33. Zhang, L., Xie, T., Chen, K., Li, C., Wen, H., Shi, Y., Zhang, J.: Quantitative characterization of the transfer film morphology of SiO2/PTFE composite. Wear 484–485, 204047 (2021). https://doi.org/10.1016/j.wear.2021.204047

    Article  CAS  Google Scholar 

  34. Haidar, D., Ye, J., Moore, A., Burris, D.L.: Assessing quantitative metrics of transfer film quality as indicators of polymer wear performance. Wear 380, 78–85 (2017). https://doi.org/10.1016/j.wear.2017.03.012

    Article  CAS  Google Scholar 

  35. Du, S.R., Hamdi, M., Sue, H.J.: Experimental and FEM analysis of mar behavior on amorphous polymers. Wear 444–445, 203155 (2020). https://doi.org/10.1016/j.wear.2019.203155

    Article  CAS  Google Scholar 

  36. Du, S.R., Mullins, M., Hamdi, M., Sue, H.J.: Quantitative modeling of scratch behavior of amorphous polymers at elevated temperatures. Polymer 197, 122504 (2020). https://doi.org/10.1016/j.polymer.2020.122504

    Article  CAS  Google Scholar 

  37. Pooley, C., Tabor, D.: Friction and Molecular Structure: The Behaviour of Some Thermoplastics. Proceedings of the Royal Society, London (1972)

    Google Scholar 

  38. Makinson, K., Tabor, D.: The friction and transfer of polytetrafluoroethylene. Proc. R. Soc. Lond. A 281, 49–61 (1964). https://doi.org/10.1098/rspa.1964.0168

    Article  CAS  Google Scholar 

  39. Tanaka, K., Uchiyama, Y., Toyooka, S.: The mechanism of wear of polytetrafluoroethylene. Wear 23, 153–172 (1973). https://doi.org/10.1016/0043-1648(73)90081-1

    Article  CAS  Google Scholar 

  40. Tanaka, K., Miyata, T.: Studies on the friction and transfer of semicrystalline polymers. Wear 41, 383–398 (1977). https://doi.org/10.1016/0043-1648(77)90016-3

    Article  CAS  Google Scholar 

  41. Ye, J., Sun, W., Zhang, Y., Liu, X., Liu, K.: Measuring evolution of transfer film substrate interface using low wear alumina PTFE. Tribol. Lett. 66, 100 (2018). https://doi.org/10.1007/s11249-018-1054-6

    Article  CAS  Google Scholar 

  42. Ye, J., Khare, H., Burris, D.L.: Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013). https://doi.org/10.1016/j.wear.2012.12.002

    Article  CAS  Google Scholar 

  43. Molero, G., Du, S.R., Mamak, M., Agerton, M., Hossain, M.M., Sue, H.J.: Experimental and numerical determination of adhesive strength in semi-rigid multi-layer polymeric systems. Polym. Test. 75, 85–92 (2019). https://doi.org/10.1016/j.polymertesting.2019.01.012

    Article  CAS  Google Scholar 

  44. Du, S.R., Zhu, Z.W., Liu, C., Zhang, T., Hossain, M.M., Sue, H.J.: Experimental observation and finite element method modeling on scratch-induced delamination of multilayer polymeric structures. Poly. Eng. Sci. 61, 1742–1754 (2021). https://doi.org/10.1002/pen.25697

    Article  CAS  Google Scholar 

  45. Gong, D., Zhang, B., Xue, Q., Wang, Q.: Effect of tribochemical reaction of polytetrafluoro-ethylene transferred film with substrates on its wear behaviour. Wear 137, 267–273 (1990). https://doi.org/10.1016/0043-1648(90)90139-2

    Article  CAS  Google Scholar 

  46. Ye, J., Moore, C., Burris, D.L.: Transfer film tenacity: A case study using ultra-low-wear alumina-PTFE. Tribol. Lett. 59, 50 (2015). https://doi.org/10.1007/s11249-015-0576-4

    Article  CAS  Google Scholar 

  47. Ratoi, M., Niste, V., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 52, 81–91 (2013). https://doi.org/10.1007/s11249-013-0195-x

    Article  CAS  Google Scholar 

  48. Amenta, F., Bolelli, G., D’Errico, F., Ottani, F., Pedrazzi, S., Allesina, G., Bertarini, A., Puddu, P., Lusvarghi, L.: Tribological behaviour of PTFE composites: interplay between reinforcement type and counterface material. Wear 510–511, 204498 (2022). https://doi.org/10.1016/j.wear.2022.204498

    Article  CAS  Google Scholar 

  49. Amenta, F., Bolelli, G., Pedrazzi, S., Allesina, G., Santeramo, F., Bertarini, A., Bertarini, A., Sassatelli, P., Lusvarghi, L.: Sliding wear behaviour of fibre-reinforced PTFE composites against coated and uncoated steel. Wear 486–487, 204097 (2021). https://doi.org/10.1016/j.wear.2021.204097

    Article  CAS  Google Scholar 

  50. Bhimaraj, P., Burris, D., Action, J., Sawyer, W.G., Toney, C., Siegel, R., Schadler, L.: Effect of matrix morphology on the wear and friction behavior of alumina nanoparticle/poly(ethylene) terephthalate composites. Wear 258, 1437–1443 (2005). https://doi.org/10.1016/j.wear.2004.09.077

    Article  CAS  Google Scholar 

  51. Khedkar, J., Negulescu, I., Meletis, E.I.: Sliding wear behavior of PTFE composites. Wear 252, 361–369 (2002). https://doi.org/10.1016/S0043-1648(01)00859-6

    Article  CAS  Google Scholar 

  52. Jain, V., Bahadur, S.: Material transfer in polymer-polymer sliding. Wear 46, 177–188 (1978). https://doi.org/10.1016/0043-1648(78)90119-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 51275144).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and data collection were performed by LZ and WL. The data analysis were performed by LZ and TX. The first draft of the manuscript was written by LZ and TX commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Xie.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xie, T. & Li, W. Effect of Different Kinds of Fillers on the Terrace-Like Structure of the Transfer Film and the Wear Behavior of the PTFE-Based Composites. Tribol Lett 71, 31 (2023). https://doi.org/10.1007/s11249-023-01708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01708-5

Keywords

Navigation