Skip to main content
Log in

Normal Contact Analysis Between Two Self-affine Fractal Surfaces at the Nanoscale by Molecular Dynamics Simulations

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This work attempts to investigate contact between two self-affine fractal surfaces with one being of a rigid solid and other of a FCC deformable body. A normal contact model between two self-affine fractal surfaces at the nanoscale is established. Effects of surface morphology on contact force, atomic structure, dislocation with normal displacement are investigated by simulating the contact process of self-affine surfaces. Results show that the normal force for rougher surfaces at initial contact yields the larger negative extremum due to effects of surface morphology on interatomic repulsion and attraction. Furthermore, the atomic structure change proportion varies monotonically with normal displacement whereas effects of surface morphology can be approximately ignored. However, the phase transition generated by too large atomic slip leads to a non-monotonic variation between total dislocation lines length and normal displacement. Differences in contact ratio-separation dependence between the classical micro-asperity model and the established model are compared.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gu, B., Shen, S., Li, H.: Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation. Chin. Phys. B 31(1), 0160101 (2022). https://doi.org/10.1088/1674-1056/ac0e24

    Article  Google Scholar 

  2. Schneider, F., Das, J., Kirsch, B., Linke, B., Aurich, J.C.: Sustainability in ultra precision and micro machining: a review. Int J Precis Eng Manuf-Green Technol 6, 601–610 (2019). https://doi.org/10.1007/s40684-019-00035-2

    Article  Google Scholar 

  3. Zhang, Y., Li, C., Jia, D., Zhang, D., Zhang, X.: Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tools Manuf. 99, 19–33 (2015). https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  4. Lautenschlaeger, M.P., Stephan, S., Horsch, M.T., Kirsch, B., Aurich, J.C., Hasse, H.: Effects of lubrication on friction and heat transfer in machining processes on the nanoscale: a molecular dynamics approach. Procedia CIRP 67, 296–301 (2018). https://doi.org/10.1016/j.procir.2017.12.216

    Article  Google Scholar 

  5. Stephan, S., Lautenschlaeger, M.P., Alhafez, I.A., Horsch, M.T., Urbassek, H.M., Hasse, H.: Molecular dynamics simulation study of mechanical effects of lubrication on a nanoscale contact process. Tribol. Lett. 66, 126 (2018). https://doi.org/10.1007/s11249-018-1076-0

    Article  CAS  Google Scholar 

  6. Yu, X., Sun, Y., Zhao, D., Wu, S.: A revised contact stiffness model of rough curved surfaces based on the length scale. Tribol. Int. 164, 107206 (2021). https://doi.org/10.1016/j.triboint.2021.107206

    Article  Google Scholar 

  7. Liu, Z., Jiang, K., Zhang, C., Zhao, Y., Tian, Y.: A stiffness model of a joint surface with inclination based on fractal theory. Precis. Eng. 62, 47–61 (2020). https://doi.org/10.1016/j.precisioneng.2019.10.012

    Article  Google Scholar 

  8. Hinkle, A.R., Nöhring, W.G., Leute, R., Junge, T., Pastewka, L.: The emergence of small-scale self-affine surface roughness from deformation. Science Advances. 6(7), eaax0847 (2020). https://doi.org/10.1126/sciadv.aax0847

    Article  CAS  Google Scholar 

  9. Gu, B., Wang, W., Shen, S., Chen, Z., Ma, H.: Investigation of formation and breakage mechanism of microweld of typical wire bonding materials via molecular dynamics simulation. MRS Commun. 12, 864–872 (2022). https://doi.org/10.1557/s43579-022-00259-5

    Article  CAS  Google Scholar 

  10. Long, Y., He, B., Cui, W., Ji, Y., Zhuang, X., Twiefel, J.: Investigations on the mechanism of microweld changes during ultrasonic wire bonding by molecular dynamics simulation. Mate. Design 192, 108718 (2020). https://doi.org/10.1016/j.matdes.2020.108718

    Article  Google Scholar 

  11. Zhao, P., Zhao, B., Pan, J., Wu, J.: Nano-grinding process of single-crystal silicon using molecular dynamics simulation: nano-grinding parameters effect. Mater. Sci. Semicond. Process. 143, 106531 (2022). https://doi.org/10.1016/j.mssp.2022.106531

    Article  CAS  Google Scholar 

  12. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998). https://doi.org/10.1063/1.368536

    Article  CAS  Google Scholar 

  13. Komvopoulos, K., Ye, N.: Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies. J. Tribol. 123(3), 632–640 (2001). https://doi.org/10.1115/1.1327583

    Article  Google Scholar 

  14. Liu, M., Proudhon, H.: Finite element analysis of frictionless contact between a sinusoidal asperity and a rigid plane: elastic and initially plastic deformations. Mech. Mater. 77, 125–141 (2014). https://doi.org/10.1016/j.mechmat.2014.06.009

    Article  Google Scholar 

  15. Liu, M., Proudhon, H.: Finite element analysis of contact deformation regimes of an elastic-power plastic hardening sinusoidal asperity. Mech. Mater. 103, 78–86 (2016). https://doi.org/10.1016/j.mechmat.2016.08.015

    Article  Google Scholar 

  16. Jackson, R.L., Ghaednia, H., Pope, S.: A solution of rigid-perfectly plastic deep spherical indentation based on slip-line theory. Tribol. Lett. 58, 47 (2015). https://doi.org/10.1007/s11249-015-0524-3

    Article  Google Scholar 

  17. An, B., Wang, X., Xu, Y., Jackson, R.L.: Deterministic elastic-plastic modelling of rough surface contact including spectral interpolation and comparison to theoretical models. Tribol. Int. 135, 246–258 (2019). https://doi.org/10.1016/j.triboint.2019.02.039

    Article  Google Scholar 

  18. Megalingam, A., Mayuram, M.M.: Effect of surface parameters on finite element method based deterministic Gaussian rough surface contact model. J. Eng. Tribol. 228(12), 1358–1373 (2014). https://doi.org/10.1177/1350650114539300

    Article  Google Scholar 

  19. Jana, T., Mitra, A., Sahoo, P.: Dynamic contact interactions of fractal surfaces. Appl. Surf. Sci. 392, 872–882 (2017). https://doi.org/10.1016/j.apsusc.2016.09.025

    Article  CAS  Google Scholar 

  20. You, S., Tang, J., Wen, Y.: Three-dimensional elastoplastic contact analysis of rough surface considering a micro-scale effect. J. Tribol. 144(1), 011503 (2022). https://doi.org/10.1115/1.4050737

    Article  CAS  Google Scholar 

  21. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929–932 (2005). https://doi.org/10.1038/nature03700

    Article  CAS  Google Scholar 

  22. Luan, B., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74(2), 026111 (2006). https://doi.org/10.1103/PhysRevE.74.026111

    Article  CAS  Google Scholar 

  23. Solhjoo, S., Vakis, A.I.: Single asperity nanocontacts: comparison between molecular dynamics simulations and continuum mechanics models. Comput. Mater. Sci. 99, 209–220 (2015). https://doi.org/10.1016/j.commatsci.2014.12.010

    Article  CAS  Google Scholar 

  24. He, Y., She, D., Liu, Z., Wang, X., Zhong, L., Wang, C., Wang, G., Mao, S.X.: Atomistic observation on diffusion-mediated friction between single-asperity contacts. Nat. Mater. 21, 173–180 (2022). https://doi.org/10.1038/s41563-021-01091-3

    Article  CAS  Google Scholar 

  25. Xie, W., Liu, C., Jiang, D., Jin, J.: Inelastic contact behaviors of nanosized single-asperity and multi-asperity on α-Fe surface: molecular dynamic simulations. Int J. Mech. Sci. 204, 106569 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106569

    Article  Google Scholar 

  26. Liu, X., Zhang, B., Wei, Y.: Interference effect on friction behavior of asperities on single crystal copper. Tribol. Int. 81, 169–178 (2015). https://doi.org/10.1016/j.triboint.2014.08.007

    Article  CAS  Google Scholar 

  27. Spijker, P., Anciaux, G., Molinari, J.F.: Dry sliding contact between rough surfaces at the atomistic scale. Tribol. Lett. 44(2), 279–285 (2011). https://doi.org/10.1007/s11249-011-9846-y

    Article  CAS  Google Scholar 

  28. Spijker, P., Anciaux, G., Molinari, J.F.: The effect of loading on surface roughness at the atomistic level. Comput. Mech. 50(3), 273–283 (2012). https://doi.org/10.1007/s00466-011-0574-9

    Article  Google Scholar 

  29. Dai, Y., Lin, J., Huang, J.: Fractal contact behavior of single crystal copper substrate and rigid plane. J. Dispersion Sci. Technol. 41(10), 1504–1512 (2020). https://doi.org/10.1080/01932691.2019.1627881

    Article  CAS  Google Scholar 

  30. Papanikolaou, M., Salonitis, K.: Fractal roughness effects on nanoscale grinding. Appl. Surf. Sci. 467–468, 309–319 (2019). https://doi.org/10.1016/j.apsusc.2018.10.144

    Article  CAS  Google Scholar 

  31. Papanikolaou, M., Salonitis, K.: Contact stiffness effects on nanoscale high-speed grinding: a molecular dynamics approach. Appl. Surf. Sci. 493, 212–224 (2019). https://doi.org/10.1016/j.apsusc.2019.07.022

    Article  CAS  Google Scholar 

  32. Yang, J., Komvopoulos, K.: A stress analysis method for molecular dynamics systems. Int. J. Solids Struct. 193–194, 98–105 (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.003

    Article  CAS  Google Scholar 

  33. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  34. Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L., Kelly, T.F.: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49(19), 4005–4015 (2001). https://doi.org/10.1016/S1359-6454(01)00287-7

    Article  CAS  Google Scholar 

  35. Jones, J.E.: On the determination of molecular fields II from the equation of state of a gas. Proc. Royal Soc. A: Math., Phys. Eng. Sci. 106, 463–477 (1924). https://doi.org/10.1098/rspa.1924.0082

    Article  CAS  Google Scholar 

  36. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 25(114), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040

    Article  Google Scholar 

  37. Filippova, V.P., Kunavin, S.A., Pugachev, M.: Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. 6(1), 1–4 (2015). https://doi.org/10.1134/S2075113315010062

    Article  Google Scholar 

  38. Zu, H., Dai, W., de Waele A.T.A.M.: Development of dilution refrigerators-a review. Cryogenics 121, 103390 (2022). https://doi.org/10.1016/j.cryogenics.2021.103390

    Article  CAS  Google Scholar 

  39. Wang, J.Z., Bian, X., Li, Q., Wu, J.H.: Numerical investigation on low-temperature superconducting negative spring in magnetic levitation. J. Supercond. Novel Magn. 34, 347–355 (2021). https://doi.org/10.1007/s10948-020-05679-9

    Article  CAS  Google Scholar 

  40. Safaeifar, H., Farshidianfar, A.: A new model of the contact force for the collision between two solid bodies. Multibody Sys.Dyn. 50, 233–257 (2020). https://doi.org/10.1007/s11044-020-09732-2

    Article  Google Scholar 

  41. Goodman, F.O., Garcia, N.: Roles of the attractive and repulsive forces in atomic-force microscopy. Phys. Rev. B. 43(6), 4728–4731 (1991). https://doi.org/10.1103/PhysRevB.43.4728

    Article  CAS  Google Scholar 

  42. Si, L., Wang, X.: Nano-adhesion influenced by atomic-scale asperities: a molecular dynamics simulation study. Appl. Surf. Sci. 317, 710–717 (2014). https://doi.org/10.1016/j.apsusc.2014.07.192

    Article  CAS  Google Scholar 

  43. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  44. Chen, B., Wu, W.: Molecular dynamics simulations of dynamics mechanical behavior and interfacial microstructure evolution of Ni-based single crystal superalloys under shock loading. J. Market. Res. 15, 6786–6796 (2021). https://doi.org/10.1016/j.jmrt.2021.11.116

    Article  CAS  Google Scholar 

  45. Zheng, X., Zhu, H., Tieu, A.K., Kosasih, B.: Roughness and lubricant effect on 3D atomic asperity contact. Tribol. Lett. 53, 215–223 (2014). https://doi.org/10.1007/s11249-013-0259-y

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant number 52105270].

Author information

Authors and Affiliations

Authors

Contributions

B.W. and Y.S. devised the study. B.W. carried out and analyzed contact mechanics calculations. Y.S. wrote the main manuscript text. All authors contributed to editing and finalizing the manuscript.

Corresponding author

Correspondence to Yunyun Sun.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

A system of two contacting rough surfaces can be considered as an equivalent system of a flat deformable surface with an effective elastic modulus E*. The effective elastic modulus E* can be written as,

$$E^{*} = \left[ {\left( {1 - \nu_{1} } \right)^{2} /E_{1} + \left( {1 - \nu_{2} } \right)^{2} /E_{2} } \right]^{ - 1},$$
(A1)

where v1, v2, and E1, E2 are the Poisson’s ratios and elastic modulus of the two interacting surfaces, respectively.

In the contact analysis of fractal surfaces, the real contact area Ar depends on the contact state, which is judged according to the relationship between the critical micro contact area ac' and the largest truncated micro contact area aL'. When aL' ≤ ac', all microcontacts are in the fully plastic contact state, thus,

$$A_{r} = \left( {\frac{D - 1}{{3 - D}}} \right)a_{L}^{\prime }$$
(A2)

when aL' > ac', both elastic and fully plastic microcontacts exist at the interface, and the real contact area Ar is given by,

$$A_{r} = \left( {\frac{D - 1}{{6 - 2D}}} \right)\left[ {1 + \left( {\frac{{a_{c}^{\prime } }}{{a_{L}^{\prime } }}} \right)^{{\left( {3 - D} \right)/2}} } \right]a_{L}^{\prime }$$
(A3)

The critical micro contact area ac' is expressed as follows,

$$a_{c}^{\prime } = \left[ {\frac{{2^{{\left( {11 - 2D} \right)}} }}{{9\pi^{{\left( {4 - D} \right)}} }}G^{{\left( {2D - 4} \right)}} \left( {\frac{{E^{*} }}{H}} \right)^{2} \ln \gamma } \right]^{{1/\left( {D - 2} \right)}}$$
(A4)

The largest truncated micro contact area aL' at a given mean surface separation distance d can be determined from the total truncated area S' of the equivalent rough surface, by

$$S^{\prime} = \left( {\frac{D - 1}{{3 - D}}} \right)a_{L}^{\prime }$$
(A5)

The total truncated area S' can be determined from numerical integration of the truncated areas of the rough surface. The material properties are listed in Table 2.

Table 2 Materials properties used in Komvopoulos's model

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Sun, Y. Normal Contact Analysis Between Two Self-affine Fractal Surfaces at the Nanoscale by Molecular Dynamics Simulations. Tribol Lett 71, 30 (2023). https://doi.org/10.1007/s11249-023-01705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01705-8

Keywords

Navigation