Skip to main content
Log in

Dry Sliding Contact Between Rough Surfaces at the Atomistic Scale

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Although, a lot is known about the factors contributing to friction, a complete physical understanding of the origins of friction is still lacking. At the macroscale several laws have long since described the relation between load (Amontons, Coulomb), apparent and real area of contact (Bowden and Tabor), and frictional forces. But it is not yet completely understood if these laws of friction extend all the way down to the atomistic level. Some current research suggests that a linear dependence of friction on the real contact area is observed at the atomistic level, but only for specific cases (indentors and rigid substrates). Because continuum models are not applicable at the atomic scale, other modeling techniques (such as molecular dynamics simulations) are necessary to elucidate the physics of friction at the small scale. We use molecular dynamics simulations to model the friction of two rough deformable surfaces, while changing the surface roughness, the sliding speed, and the applied normal load. We find that friction increases with roughness. Also all sliding cases show considerable surface flattening, reducing the friction close to zero after repetitive sliding. This questions the current view of (static) roughness at the atomistic scale, and possibly indicates that the macroscopic laws of friction break down several orders of magnitude before reaching the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford, United Kingdom (2001)

    Google Scholar 

  2. Blau, P.J.: The significance and use of the friction coefficient. Tribol. Int. 34, 585–591 (2001)

    Article  Google Scholar 

  3. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  4. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  5. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  6. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1–R62 (2005)

    Article  CAS  Google Scholar 

  7. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  CAS  Google Scholar 

  8. Luan, B., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006)

    Article  Google Scholar 

  9. Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996)

    Article  Google Scholar 

  10. Buldum, A., Ciraci, S., Batra, I.P.: Contact, nanoindentation, and sliding friction. Phys. Rev. B 57, 2468–2476 (1998)

    Article  CAS  Google Scholar 

  11. Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip-self-assembled monolayers interactions. Phys. Rev. B 78, 235409 (2008)

    Article  Google Scholar 

  12. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature. 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  13. Cheng, S., Luan, B., Robbins, M.O.: Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys. Rev. E 81, 016102 (2010)

    Article  Google Scholar 

  14. Crill, J.W., Ji, X., Irving, D.L., Brenner, D.W., Padgett, C.W.: Atomic and multi-scale modeling of non-equilibrium dynamics at metalmetal contacts. Model. Simul. Mater. Sci. Eng. 3, 034001 (2010)

    Article  Google Scholar 

  15. Kim, W.K., Falk, M.L.: Accelerated molecular dynamics simulation of low-velocity frictional sliding. Model. Simul. Mater. Sci. Eng. 3, 034003 (2010)

    Article  Google Scholar 

  16. Knippenberg, M.T., Mikulski, P.T., Harrison, J.A.: Effects of tip geometry on interfacial contact forces. Model. Simul. Mater. Sci. Eng. 3, 034002 (2010)

    Article  Google Scholar 

  17. Perez, D., Dong, Y., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)

    Article  Google Scholar 

  18. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011)

    Article  Google Scholar 

  19. Dong, Y., Perez, D., Voter, A.F., Martini, A.: The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett. 42, 99–107 (2011)

    Article  Google Scholar 

  20. Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)

    Article  CAS  Google Scholar 

  21. Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214 (2008)

    Article  Google Scholar 

  22. Campañà, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20, 354013 (2008)

    Article  Google Scholar 

  23. Luan, B., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36, 1–16 (2009)

    Article  CAS  Google Scholar 

  24. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  25. Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2010)

    Article  Google Scholar 

  26. Spijker, P., Anciaux, G., Molinari, J.F.: The effect of loading on surface roughness at the atomistic level, Comput. Mech. Published online (2011). doi:10.1007/s00466-011-0574-9

  27. Delogu, F.: Molecular dynamics of collisions between rough surfaces. Phys. Rev. B 82, 205415 (2010)

    Article  Google Scholar 

  28. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

    Article  CAS  Google Scholar 

  29. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)

    Article  CAS  Google Scholar 

  30. Abraham, F.F., Rudge, W.E., Alexopoulos, P.S.: Fragmentation dynamics in asperity collisions: a molecular dynamics simulation study. Comput. Mater. Sci. 3, 21–40 (1994)

    Article  CAS  Google Scholar 

  31. Miller, G.S.P.: The definition and rendering of terrain maps, In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 39–48. ACM, New York, NY (1986)

  32. Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication and wear. In: Bhushan, B., (ed.) Handbook of Modern Tribology, pp. 717–765. CRC Press, Boca Raton, FL (2000)

  33. Mosey, N.J., Müser, M.H.: Atomistic modeling of friction. Rev. Comput. Chem. 25, 67–124 (2007)

    Article  CAS  Google Scholar 

  34. Fineberg, J.: Tribology: diamonds are forever—or are they?. Nat. Mater. 10, 3–4 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this article is supported by the European Research Council (ERCstg UFO-240332) and the Swiss National Science Foundation (Grant No. 200021_122046/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Spijker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijker, P., Anciaux, G. & Molinari, JF. Dry Sliding Contact Between Rough Surfaces at the Atomistic Scale. Tribol Lett 44, 279 (2011). https://doi.org/10.1007/s11249-011-9846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-011-9846-y

Keywords

Navigation