Skip to main content
Log in

A Mixed EHL Analysis Method for Grease and Formulas for Film Thickness and Asperity Load

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper introduces the grease average flow model considering non-Newtonian characteristics into the grease-mixed elastohydrodynamic lubrication (EHL) numerical analysis. On this basis, a method of grease EHL analysis is established with the roughness coupled indirectly. The effect of the rheological parameter on the variety law of the lubrication state is studied. The results show that the rheological parameter affects the lubrication state versus the dimensionless speed, material, and roughness. Finally, the film thickness and asperity load prediction formulas are derived based on the numerical simulation results, which are suitable for various greases obeying the Ostwald model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Source data available by request.

Code Availability

We used custom code developed by our lab.

Abbreviations

\(a\) :

Constant for pressure flow factor

\(b\) :

Constant for pressure flow factor

\(d\) :

Separation based on asperity, m

\(h\) :

Nominal film thickness, m

\(h_{0}\) :

Rigid body displacement, m

\(h_{d}\) :

Vickers hardness of softer material, Pa

\(h_{T}\) :

Local film thickness, m

\(\overline{h}_{T}\) :

Average gap, m

\(k\) :

Constant in prediction formulas

\(K\) :

Hardness coefficient

\(n\) :

Rheological index

\(p\) :

Total pressure, Pa

\(p_{a}\) :

Asperity pressure, Pa

\(p_{A,B}\) :

Hydrodynamic pressure at boundaries of the ‘unit’

\(p_{h}\) :

Hydrodynamic pressure, Pa

\(P_{H}\) :

Maximum Hertzian contact pressure, Pa

\(\overline{p}\) :

Average hydrodynamic pressure, Pa

\(q_{x}\) :

Unit flow along \(x\) direction, m2/s

\(\overline{q}_{x}\) :

Mean unit flow in the \(x\) direction, m2/s

\(r\) :

Asperity curvature radius

\(R\) :

Equivalence contact radius, m

\(u_{0}\) :

Rolling velocity, m/s

\(w\) :

Total load per unit length, N/m

\(y_{s}\) :

Distance from the mean of surface to that of asperity, m/s

\(z_{s}\) :

Asperity height, m

\(\beta\) :

Roughness parameter

\(\varepsilon_{p,w}\) :

Convergence threshold

\(\dot{\gamma }\) :

Shear rate, s1

\(\delta\) :

Combined roughness, m

\(\eta_{s}\) :

Fluid viscosity, Pa*s

\(\rho\) :

Fluid density, kg/m3

\(\rho_{0}\) :

Ambient density, kg/m3

\(\sigma\) :

Standard deviation of surface height, m

\(\sigma_{s}\) :

Standard deviation of asperity height, m

\(\tau\) :

Shear stress, N

\(\tau_{s}\) :

Yield shear stress, N

\(\phi\) :

Plastic viscosity, Pa·sn

\(\phi_{0}\) :

Ambient plastic viscosity, Pa·sn

\(\phi_{x}\) :

Pressure flow factor in the \(x\) direction

\(\phi_{{\text{g}}}\) :

Grease pressure flow factor

\(\upsilon\) :

Poisson ratio

\(\omega_{c}\) :

Critical interference, m

References

  1. Morales-Espejel, G.E.: Surface roughness effects in elastohydrodynamic lubrication: a review with contributions. Proc. Inst. Mech. Eng. J (2014). https://doi.org/10.1177/1350650113513572

    Article  Google Scholar 

  2. Zhang, S.W., Zhang, C.H., Hu, Y.Z., Ma, L.R.: Numerical simulation of mixed lubrication considering surface forces. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.105878

    Article  Google Scholar 

  3. Hu, Y.Z., Zhu, D.: A full numerical solution to the mixed lubrication in point contacts. J. Tribol. (1999). https://doi.org/10.1115/1.555322

    Article  Google Scholar 

  4. Pusterhofer, M., Bergmann, P., Summer, F., Grün, F., Brand, C.: A novel approach for modeling surface effects in hydrodynamic lubrication. Lubricants (2018). https://doi.org/10.3390/lubricants6010027

    Article  Google Scholar 

  5. Dobrica, M.B., Fillon, M., Maspeyrot, P.: Mixed elastohydrodynamic lubrication in a partial journal bearing—comparison between deterministic and stochastic models. J. Tribol. (2006). https://doi.org/10.1115/1.2345404

    Article  Google Scholar 

  6. Patir, N., Cheng, H.S.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. (1978). https://doi.org/10.1115/1.3453103

    Article  Google Scholar 

  7. Li, W.-L.: An average flow model for couple stress fluids. Tribol. Lett. (2003). https://doi.org/10.1023/A:1024873422097

    Article  Google Scholar 

  8. König, F., Sous, C., Jacobs, G.: Numerical prediction of the frictional losses in sliding bearings during start-stop operation. Friction (2021). https://doi.org/10.1007/s40544-020-0417-9

    Article  Google Scholar 

  9. Li, W.-L.: Modeling of head/disk interface—an average flow model. Tribol. Lett. (2004). https://doi.org/10.1023/B:TRIL.0000044518.79255.03

    Article  Google Scholar 

  10. Bobach, L., Beilicke, R., Bartel, D.: Transient thermal elastohydrodynamic simulation of a spiral bevel gear pair with an octoidal tooth profile under mixed friction conditions. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2019.106020

    Article  Google Scholar 

  11. Pei, J., Han, X., Tao, Y., Feng, S.: Mixed elastohydrodynamic lubrication analysis of line contact with non-gaussian surface roughness. Tribol. Int. (2020). https://doi.org/10.1016/j.triboint.2020.106449

    Article  Google Scholar 

  12. Wu, M.J., Han, X., Tao, Y.R., Pei, J.X.: An average flow model considering non-newtonian characteristics with application to grease behavior. J. Tribol. (2022). https://doi.org/10.1115/1.4054508

    Article  Google Scholar 

  13. Wang, D., de Boer, G., Nadimi, S., Neville, A., Ghanbarzadeh, A.: A fully coupled normal and tangential contact model to investigate the effect of surface roughness on the partial slip of dissimilar elastic materials. Tribol. Lett. (2022). https://doi.org/10.1007/s11249-022-01636-w

    Article  Google Scholar 

  14. Poon, S.Y.: An experimental study of grease in elastohydrodynamic lubrication. J. Lubr. Technol. (1972). https://doi.org/10.1115/1.3451631

    Article  Google Scholar 

  15. Wen, S.Z., Ying, T.N.: A theoretical and experimental study of EHL lubricated with grease. J. Tribol. (1988). https://doi.org/10.1115/1.3261572

    Article  Google Scholar 

  16. Ahme, L., Kuhn, E., Delgado Canto, M.Á.: Experimental study on the expended energy on structural degradation of lubricating greases. Tribol. Lett. (2022). https://doi.org/10.1007/s11249-022-01622-2

    Article  Google Scholar 

  17. Ren, J., Gong, K.L., Zhao, G.Q., Wu, X.H., Wang, X.B.: Investigation of the interaction, rheological and tribological properties of bis(pinacolato)diboron with lithium grease. Tribol. Lett. (2021). https://doi.org/10.1007/s11249-021-01521-y

    Article  Google Scholar 

  18. Lugt, P.M.: A review on grease lubrication in rolling bearings. Tribol. Trans. (2009). https://doi.org/10.1080/10402000802687940

    Article  Google Scholar 

  19. Wang, D.F., Yang, J.L., Wei, P.C., Pu, W.: A mixed EHL model of grease lubrication considering surface roughness and the study of friction behavior. Tribol. Int. (2021). https://doi.org/10.1016/j.triboint.2020.106710

    Article  Google Scholar 

  20. Lin, C.L., Meehan, P.A.: Microstructure characterization of degraded grease in axle roller bearings. Tribol. Trans. (2019). https://doi.org/10.1080/10402004.2019.1601316

    Article  Google Scholar 

  21. Wang, J., Guo, X.C., He, Y., Jiang, M.J., Gu, K.C.: Tribological characteristics of graphene as grease additive under different contact forms. Tribol. Int. (2018). https://doi.org/10.1016/j.triboint.2018.06.026

    Article  Google Scholar 

  22. Kauzlarich, J.J., Greenwood, J.A.: Elastohydrodynamic lubrication with herschel-bulkley model greases. Tribol. Trans. (1972). https://doi.org/10.1080/05698197208981427

    Article  Google Scholar 

  23. Jonkisz, W., Krzeminski-Freda, H.: The properties of elastohydrodynamic grease films. Wear (1982). https://doi.org/10.1016/0043-1648(82)90053-9

    Article  Google Scholar 

  24. Bordenet, L., Dalmaz, G., Chaomleffel, J.P., Vergne, F.: A study of grease film thicknesses in elastorheodynamic rolling point contacts. Lubr. Sci. (1990). https://doi.org/10.1002/ls.3010020402

    Article  Google Scholar 

  25. Yoo, J.Y., Kim, K.W.: Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the herschel-bulkley model. Tribol. Int. (1997). https://doi.org/10.1016/S0301-679X(96)00069-2

    Article  Google Scholar 

  26. Huang, P.: Numerical calculation of elastohydrodynamic lubrication: methods and programs. Wiley, Hoboken (2015)

    Book  Google Scholar 

  27. Hua, X.J., Puoza, J.C., Zhang, P.Y., Yin, B.F., Xie, X., Din, J.L.: Numerical simulation and experimental analysis of grease friction properties on textured surface. Iran J Sci Technol A (2018). https://doi.org/10.1007/s40997-018-0162-0

    Article  Google Scholar 

  28. Zhang, K.F., Peng, X.N., Zhang, Y.Z., Zhou, H., Ma, M.: Numerical thermal analysis of grease-lubrication in limited line contacts considering asperity contact. Tribol Int (2019). https://doi.org/10.1016/j.triboint.2019.01.026

    Article  Google Scholar 

  29. Dowson, D., Higginson, G.R.: Elasto-hydrodynamic lubrication: international series on materials science and technology. Elsevier, Amsterdam (2014)

    Google Scholar 

  30. Dowson, D., Toyoda, S.: Central film thickness formula for elastohydrodynamic line contacts. In: Proceedings of the 5th leeds-lyon symposium on tribology. Mechanical Engineering Publications, London (1979)

  31. Masjedi, M., Khonsari, M.: Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J. Tribol. (2012). https://doi.org/10.1115/1.4005514

    Article  Google Scholar 

  32. Cen, H., Lugt, P.M.: Film thickness in a grease lubricated ball bearing. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.01.032

    Article  Google Scholar 

  33. Dong, D., Qian, X.L.: A theory of elastohydrodynamic grease-lubricated line contact based on a refined rheological model. Tribol. Int. (1988). https://doi.org/10.1016/0301-679X(88)90003-5

    Article  Google Scholar 

  34. Kim, T.W., Cho, Y.J.: The flow factors considering the elastic deformation for the rough surface with a non-gaussian height distribution. Tribol. Trans. (2008). https://doi.org/10.1080/10402000701730502

    Article  Google Scholar 

  35. Ai, X., Cheng, H.S.: A transient EHL analysis for line contacts with measured surface roughness using multigrid technique. J. Tribol. (1994). https://doi.org/10.1115/1.2928882

    Article  Google Scholar 

  36. Cen, H., Lugt, P.M., Morales-Espejel, G.: On the film thickness of grease-lubricated contacts at low speeds. Tribol. Trans. (2014). https://doi.org/10.1080/10402004.2014.897781

    Article  Google Scholar 

  37. Greenwood, J.A., Tripp, J.: The contact of two nominally flat rough surfaces. In: Proceedings of the institution of mechanical engineers, SAGE Journals, Southend Oaks (1970)

  38. Kogut, L., Etsion, I.: A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. (2003). https://doi.org/10.1080/10402000308982641

    Article  Google Scholar 

  39. Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. (2004). https://doi.org/10.1115/1.1609488

    Article  Google Scholar 

  40. Hamrock, B.J., Jacobson, B.O.: Elastohydrodynamic lubrication of line contacts. ASLE Trans. (1984). https://doi.org/10.1080/05698198408981572

    Article  Google Scholar 

  41. Dong, D., Kimura, Y., Okada, K., Liu, W.: Grease lubrication in isothermo-elastohydrodynamic line contact. Lubr. Sci. (1996). https://doi.org/10.1002/ls.3010080304

    Article  Google Scholar 

  42. Kimura, Y., Muraki, M.: Evaluation of some traction fluids with a four roller machine. Tribol. Int. (1979). https://doi.org/10.1016/0301-679X(79)90141-5

    Article  Google Scholar 

  43. Zhou, C., Xing, M., Hu, B., Shi, Z.: A modified wear model considering contact temperature for spur gears in mixed elastohydrodynamic lubrication. Tribol. Lett. (2020). https://doi.org/10.1007/s11249-020-01350-5

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 52075146) and the Funds for Creative Research Groups of Hebei Province (Grant Number E2020202142).

Author information

Authors and Affiliations

Authors

Contributions

MW, XH, YT, and JP contributed to conceptualization, MW provided methodology, MW and JP provided software, MW performed formal analysis, MW assisted in data curation, MW, XH, YT, and JP contributed to writing of the original draft, MW, YT, and JP contributed to writing, reviewing, & editing of the manuscript, XH and YT supervised the study, and YT and XH contributed to funding acquisition.

Corresponding authors

Correspondence to Xu Han or Yourui Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Simulation and curve fitting results of minimum film thickness
Table 5 Simulation and curve fitting results of central film thickness
Table 6 Simulation and curve fitting results of asperity load ratio

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Han, X., Tao, Y. et al. A Mixed EHL Analysis Method for Grease and Formulas for Film Thickness and Asperity Load. Tribol Lett 70, 128 (2022). https://doi.org/10.1007/s11249-022-01666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01666-4

Keywords

Navigation