Skip to main content
Log in

Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Elastohydrodynamic lubrication (EHL) point contact occurs between two rough surfaces at the mesoscopic level, while the interaction of rough surfaces involves contact between asperities at the microscale level. In most cases, the contact between asperities within an interface takes the form of lateral contact rather than peak contact. Regions devoid of contact asperities are filled with lubricating oil. However, conventional models often oversimplify lateral contact forms as interactions between asperities and a smooth, rigid plane. These simplifications fail to accurately represent the true contact conditions and can lead to inaccuracies in the analysis of EHL’s contact performance. To address this issue, we have developed a novel EHL interface model comprising two rough surfaces. This model allows us to explore the influence of asperity height, contact angle, and contact azimuth angle on EHL interface performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

\(A_{n}\) :

The nominal contact area

\(W\) :

The normal load

\(R\) :

The radius of asperity

\(z\) :

The height of asperity

\(h\) :

The average gap (the mean film thickness)

\(\varphi\) :

The asperity contact angle

\(\theta\) :

The contact azimuth angle

\(F_{in}\) :

The normal force on asperity

\(n_{i}\) :

The normal component force

\(\tau_{i}\) :

The tangential component force

\(h_{i}\) :

The horizontal component force

\(\delta\) :

The asperity deformation

\(\delta_{c}\) :

The critical deformation

\(\delta_{m}\) :

The amplitude of the deformation

\(S_{k}\) :

The hardness coefficient

\(\nu\) :

The equivalent Poisson’s ratio

\(E\) :

The composite Young’s modulus

\(G\) :

The shear modulus

\(\omega\) :

The angular frequency

\(t\) :

The time

\(T\) :

The period

\(k_{in}\) :

The asperity contact stiffness

\(k_{idn}^{{}}\) :

The average contact stiffness

\(e_{in}^{{}}\) :

The asperity contact energy dissipation

\(\delta^{*}\) :

The asperity deformation (The superscript asterisk (*) denotes dimensionless quantities.)

\(\zeta^{*}\) :

The asperity displacement

\(\zeta_{m}^{*}\) :

The displacement amplitude

\(\mu_{s}\) :

The friction coefficient

\(c_{i\tau }^{*}\) :

The tangential contact damping

\(k_{i\tau }^{*}\) :

The tangential contact stiffness

\(\phi (z)\) :

The distribution of asperity heights

\(\sigma_{z}\) :

The standard deviation of the asperity height distribution

\(\eta_{a}\) :

The density of asperities

\(\Gamma (\varphi ,\theta )\) :

The joint probability density function of asperity contact angles and contact azimuth angles

\(M\) :

The asperity number

\(m\) :

The number of contacting asperities

\(\sigma_{\varphi }\) :

The standard deviations of asperity contact angles

\(\sigma_{\theta }\) :

The standard deviations of asperity contact azimuth angle

\(\Delta^{*}\) :

The normal deformation of the interface

\(F_{s}^{*}\) :

The solid asperity contact force

\(K_{s}^{*}\) :

The solid contact stiffness

\(C_{s}^{*}\) :

The solid contact damping

\(A_{l}\) :

The total area of the closed oil pits

\(p_{l}\) :

The normal dynamic force of the squeeze oil film

\(p_{l}\) :

The normal dynamic force of the squeeze oil film

\(\overline{{p_{l} }}\) :

The mean pressure

\(B\) :

The width of contact area

\(\eta_{l}\) :

The lubricating oil viscosity

\(\phi_{x} ,\phi_{y}\) :

Two pressure flow factors

\(\phi_{c}\) :

The contact factor

\(\overline{h}_{T}^{*}\) :

The expectation of dimensionless local film thickness

\(\chi\) :

The end leak coefficient

\(F_{l}^{*}\) :

The dimensionless liquid contact force

\(K_{l}^{*}\) :

The liquid contact stiffness

\(C_{l}^{*}\) :

The liquid contact damping

References

  1. Zhao Y, Liu HC, Morales-Espejel GE, Venner CH. Effects of solid viscoelasticity on elastohydrodynamic lubrication of point contacts. Tribol Int. 2022;171:107562.

    Google Scholar 

  2. Greenwood JA. Elastohydrodynamic lubrication. Lubricants. 2020;8:1–30.

    Google Scholar 

  3. Ren G. Hypo-elastohydrodynamic lubrication of journal bearings with deformable surface. Tribol Int. 2022;175:107787.

    Google Scholar 

  4. Simo KL, Meffert D, Magyar B, Oehler M, Sauer B. Simulative investigation of the influence of surface texturing on the elastohydrodynamic lubrication in chain joints. Tribol Int. 2022;171:107564.

    Google Scholar 

  5. Tsuha NAH, Cavalca KL. Finite line contact stiffness under elastohydrodynamic lubrication considering linear and nonlinear force models. Tribol Int. 2020;146:106219.

    Google Scholar 

  6. Wang Z, Pu W, Pei X, Cao W. Nonlinear dynamical behaviors of spiral bevel gears in transient mixed lubrication. Tribol Int. 2021;160:107022.

    Google Scholar 

  7. Lv FR, Zhang XJ, Ji CC, Rao ZS. Theoretical and experimental investigation on local turbulence effect on mixed-lubrication journal bearing during speeding up. Phys Fluids. 2022;34:113104.

    CAS  ADS  Google Scholar 

  8. Bi C, Han D, Wu Y, Li Y, Yang J. Thermohydrodynamic investigation for supercritical carbon dioxide high speed tilting pad bearings considering turbulence and real gas effect. Phys Fluids. 2021;33:125114.

    CAS  ADS  Google Scholar 

  9. Hutchings I, Shipway P. Surface topography and surfaces in contact. Oxford: Butterworth-Heinemann; 2017.

    Google Scholar 

  10. Masjedi M, Khonsari MM. Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J Tribol. 2012;134:011503.

    Google Scholar 

  11. Johnson KL, Greenwood J, Poon SY. A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear. 1972;19:91–108.

    Google Scholar 

  12. Xu J, Zhu J, Xia W, Liu B. Micro-asperity contact area considering strain hardening for metallic materials. J Tribol. 2021;144(4):041503.

    Google Scholar 

  13. Zhu L, Chen J, Zhang Z, Hong J. Normal contact stiffness model considering 3D surface topography and actual contact status. Mech Sci. 2021;12:41–50.

    Google Scholar 

  14. Sepehri A, Farhang K. On elastic interaction of nominally flat rough surfaces. J Tribol. 2007;130:011014.

    Google Scholar 

  15. Sepehri A, Farhang K. Closed-form equations for three dimensional eastic-plastic contact of nominally flat rough surfaces. J Tribol. 2009;131:041402.

    Google Scholar 

  16. Hua DY, Qiu L, Cheng HS. Modeling of lubrication in micro contact. Tribol Lett. 1997;3:81–6.

    CAS  Google Scholar 

  17. Chong WW, Hamdan SH, Wong KJ, Yusup S. Modelling transitions in regimes of lubrication for rough surface contact. Lubricants. 2019;7(9):77–121.

    Google Scholar 

  18. Hu Y, Wang H, Wang W, Zhu D. Computer model of mixed lubrication in point contacts. Tribol Int. 2001;34:65–73.

    Google Scholar 

  19. Du Y, Lan J, Quan H, Sun C, Liu X, Yang X. Journal bearing properties and dynamic responses under transient impact load and elastic deformation. Phys Fluids. 2021;33:065118.

    CAS  ADS  Google Scholar 

  20. Lv FR, Shang GYQ, Zou DL, Ji AM. Transient mixed-lubrication analysis of low-viscosity lubricated bearings under impact load with consideration of turbulence. Phys Fluids. 2022;34:033108.

    CAS  ADS  Google Scholar 

  21. Gao ZQ, Xi YP, Peng LX, Fu WP, Wang W, Hu WP, Wei X. Normal and tangential contact models for mixed lubrication of mechanical interface. Phys Fluids. 2022;34:112112.

    CAS  ADS  Google Scholar 

  22. Patir N, Cheng HS. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J Lubr Technol. 1978;100:12–7.

    Google Scholar 

  23. Masjedi M, Khonsari MM. On the effect of surface roughness in point-contact EHL: formulas for film thickness and asperity load. Tribol Int. 2015;82:228–44.

    Google Scholar 

  24. Zhao Y, Maietta D, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol. 2000;122:86–93.

    Google Scholar 

  25. Xiao H, Sun Y, Xu J. Investigation into the normal contact stiffness of rough surface in line contact mixed elastohydrodynamic lubrication. Tribol Trans. 2018;61:742–53.

    CAS  Google Scholar 

  26. Kogut L, Etsion I. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol Trans. 2003;46:383–90.

    CAS  Google Scholar 

  27. Krupka I, Hartl M, Matsuda K, Nishikawa H, Wang J, Guo F, et al. Deformation of rough surfaces in point EHL contacts. Tribol Lett. 2019;67(33):1–16.

    Google Scholar 

  28. Cornelio C, Spagnuolo E, Di Toro G, Nielsen S, Violay M. Mechanical behaviour of fluid-lubricated faults. Nat Commun. 2019;10:1274.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Aghababaei R, Warner DH, Molinari JF. Critical length scale controls adhesive wear mechanisms. Nat Commun. 2016;7:11816.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Zhao B, Zhang S, Keer LM. Semi-analytical and numerical analysis of sliding asperity interaction for power-law hardening materials. Wear. 2016;364–365:184–92.

    Google Scholar 

  31. Shi X, Zou Y, Fang H. Numerical investigation of the three-dimensional elastic–plastic sloped contact between two hemispheric asperities. J Appl Mech. 2016;83:101004.

    Google Scholar 

  32. Verma NN, Mazumder S. Quantifying the effect of asperity size and shape on thermal contact conductance of metal-metal contacts through direct numerical simulations. Int J Heat Mass Transf. 2017;115:336–46.

    Google Scholar 

  33. Xu H, Komvopoulos K. A fracture mechanics analysis of asperity cracking due to sliding contact. Int J Solids Struct. 2019;171:1–9.

    Google Scholar 

  34. Zhang K, Li G, Gong JZ, Zhang M. Normal contact stiffness of rough surfaces considering oblique asperity contact. Adv Mech Eng. 2019;11:1687814018824471.

    Google Scholar 

  35. Greenwood J, Williamson J. Contact of nominally flat surfaces. Proceedings of the Royal Society of London (A). 1966;295:300–19.

    CAS  ADS  Google Scholar 

  36. Wang QJ, Zhu D. Hertz theory: contact of spherical surface. Boston: Springer; 2013.

    Google Scholar 

  37. Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. J Appl Mech. 1953;20:327–44.

    MathSciNet  Google Scholar 

  38. Brizmer V, Kligerman Y, Etsion I. Elastic–plastic spherical contact under combined normal and tangential loading in full stick. Tribol Lett. 2007;25:61–70.

    Google Scholar 

  39. Thomson WT, Dahleh MD. Theory of vibration with applications. 5th ed. Peking: Prentice-Hall; 2005.

    Google Scholar 

  40. Misra AK. Mechanistic model for contact between rough surfaces. J Eng Mech-Asce. 1997;123:475–84.

    Google Scholar 

  41. Misra A, Huang S. Effect of loading induced anisotropy on the shear behavior of rough interfaces. Tribol Int. 2011;44:627–34.

    Google Scholar 

  42. Greenwood J, Tripp J. The contact of two nominally flat rough surfaces. Arch Proc Inst Mech Eng. 1970;185:625–34.

    Google Scholar 

  43. Jackson RL, Green I. A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol Int. 2006;39:906–14.

    CAS  Google Scholar 

  44. Durst F. Fluid mechanics: an introduction to the theory of fluid flows. Heidelberg: Springer; 2022.

    Google Scholar 

  45. Wu C, Zheng L. A contact factor and its application in studying partial hydrodynamic lubrication. Lubr Eng. 1989;3:1–6 (in chinese).

    Google Scholar 

  46. Cameron A. Basic lubrication theory. London: Ellis Horwood Press; 1981.

    Google Scholar 

  47. Wen S, Huang P. Principles of tribology (second edition). Peking: Tsinghua University Press; 2017.

    Google Scholar 

  48. Pei JX, Han X, Tao YR. An improved stiffness model for line contact elastohydrodynamic lubrication and its application in gear pairs. Ind Lubr Tribol. 2022;72(5):703–8.

    Google Scholar 

  49. Qin WJ, Chao J, Duan LJ. Study on stiffness of elastohydrodynamic line contact. Mech Mach Theory. 2015;86:36–47.

    Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (No. 52005401, No. 52375127), the Cultivation Scientific Research Project of Panzhihua University (2021PY001), the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province (2022CL15), and the Project for Science and Technology Plan of Henan Province (212102210445).

Author information

Authors and Affiliations

Authors

Contributions

ZG: Formal analysis, Writing original draft, Funding acquisition, Writing review & editing; YZ: Investigation; XW: Software, Visualization, Funding acquisition. YZ: Conceptualization, Methodology; WF: Validation, Visualization, Supervision; WW: Project administration.

Corresponding author

Correspondence to Weiping Fu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for Publication

All authors have approved the final manuscript and submission to the journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Zhang, Y., Wei, X. et al. Elastohydrodynamic Lubrication Interface Stiffness and Damping Considering Asperity Lateral Contact. Acta Mech. Solida Sin. 37, 109–123 (2024). https://doi.org/10.1007/s10338-023-00441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00441-9

Keywords

Navigation