Skip to main content
Log in

Prandtl–Tomlinson-Type Models for Coupled Molecular Sliding Friction: Chain-Length Dependence of Friction of Self-assembled Monolayers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Previous work (Manzi et al. in Tribol Lett 69:147, 2021) proposed a tip–molecular interaction for calculating the friction of organic overlayers that consisted of a parabolic potential that extended to some cut-off distance when the energy reached a value of \({E}_{\text{sld}}^{0}\), which represents an activation barrier for the detachment of the tip from the molecular terminus. A proposed advantage of such a potential was that it could be coupled to other degrees of freedom of the system. A method for accomplishing this is described here for the interaction between a tip and a compliant molecular chain to model the velocity, temperature, and chain-length dependences of the friction force. Analytical equations are derived for constant force sliding, such as in a ball-on-flat tribometer, and for compliant sliding, such as in an atomic force microscopy (AFM) experiment. The analytic models provided good fits to the chain-length dependence of the friction of carboxylate self-assembled monolayers (SAMs) on copper measured in an ultrahigh vacuum tribometer as part of this work and for alkyl thiolate SAMs on gold measured by an AFM taken from the literature. The results indicate that the commonly observed decrease in friction with increasing chain length has a component that is due to geometrical effects, as well as the possible participation of interchain van der Waals’ interactions that are commonly invoked as being responsible for the friction reduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available in article or as Supplementary Material.

References

  1. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  Google Scholar 

  2. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  3. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condens. Matter. 13, R619–R642 (2001)

    Article  CAS  Google Scholar 

  4. Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001)

    Article  CAS  Google Scholar 

  5. Tomlinson, G.A.: A Molecular Theory of Friction. Phil Mag 7, 905 (1929)

    Article  CAS  Google Scholar 

  6. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  7. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  Google Scholar 

  8. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  9. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413 (2005)

    Article  CAS  Google Scholar 

  10. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  CAS  Google Scholar 

  11. Porto, M., Zaloj, V., Urbakh, M., Klafter, J.: Macroscopic versus microscopic description of friction: from Tomlinson model to shearons. Tribol. Lett. 9, 45–54 (2000)

    Article  CAS  Google Scholar 

  12. Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)

    Article  CAS  Google Scholar 

  13. Bliznyuk, V.N., Everson, M.P., Tsukruk, V.V.: Nanotribological properties of organic boundary lubricants: Langmuir films versus self-assembled monolayers. J Tribol-Trans ASME 120, 489–495 (1998)

    Article  CAS  Google Scholar 

  14. Zhang, L., Leng, Y., Jiang, S.: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19, 9742–9747 (2003)

    Article  CAS  Google Scholar 

  15. Tsukruk, V.V., Everson, M.P., Lander, L.M., Brittain, W.J.: Nanotribological properties of composite molecular films: C60 anchored to a self-assembled monolayer. Langmuir 12, 3905–3911 (1996)

    Article  CAS  Google Scholar 

  16. van der Vegte, E.W., Subbotin, A., Hadziioannou, G., Ashton, P.R., Preece, J.A.: Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on gold: effect of chain length on adhesion, friction, and imaging. Langmuir 16, 3249–3256 (2000)

    Article  CAS  Google Scholar 

  17. Liu, Y., Evans, D.F., Song, Q., Grainger, D.W.: Structure and frictional properties of self-assembled surfactant monolayers. Langmuir 12, 1235–1244 (1996)

    Article  CAS  Google Scholar 

  18. Weymouth, A.J., Hofmann, T., Giessibl, F.J.: Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014)

    Article  CAS  Google Scholar 

  19. Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)

    Article  CAS  Google Scholar 

  20. Manzi, S.J., Carrera, S.E., Furlong, O.J., Kenmoe, G.D., Tysoe, W.T.: Prandtl–Tomlinson-type models for molecular sliding friction. Tribol. Lett. 69, 147 (2021)

    Article  Google Scholar 

  21. Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  CAS  Google Scholar 

  22. Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer I. J. Chem. Phys. 24, 966–978 (1956)

    Article  CAS  Google Scholar 

  23. McDermott, M.T., Green, J.-B.D., Porter, M.D.: Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: structural basis of microscopic friction and wear. Langmuir 13, 2504–2510 (1997)

    Article  CAS  Google Scholar 

  24. Kiely, J.D., Houston, J.E.: Contact hysteresis and friction of alkanethiol self-assembled monolayers on gold. Langmuir 15, 4513–4519 (1999)

    Article  CAS  Google Scholar 

  25. Joyce, S.A., Thomas, R.C., Houston, J.E., Michalske, T.A., Crooks, R.M.: Mechanical relaxation of organic monolayer films measured by force microscopy. Phys. Rev. Lett. 68, 2790–2793 (1992)

    Article  CAS  Google Scholar 

  26. Salmeron, M., Neubauer, G., Folch, A., Tomitori, M., Ogletree, D.F., Sautet, P.: Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films. Langmuir 9, 3600–3611 (1993)

    Article  CAS  Google Scholar 

  27. Persson, B.N.J.: Sliding friction. North-Holland, Amsterdam (1999)

    Google Scholar 

  28. Sasaki, N., Tsukada, M., Fujisawa, S., Sugawara, Y., Morita, S.: Theoretical analysis of atomic-scale friction in frictional-force microscopy. Tribol. Lett. 4, 125–128 (1998)

    Article  Google Scholar 

  29. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T. Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80 (2009).

  30. Müser, M.: Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 84, 125419 (2011)

    Article  CAS  Google Scholar 

  31. Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 86, 035443 (2012)

    Article  CAS  Google Scholar 

  32. Manzi, S., Tysoe, W., Furlong, O.: Temperature dependences in the tomlinson/prandtl model for atomic sliding friction. Tribol. Lett. 55, 363–369 (2014)

    Article  Google Scholar 

  33. Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57, 18 (2015)

    Article  CAS  Google Scholar 

  34. De Barros Bouchet, M.I., Martin, J.M., Forest, C., le Mogne, T., Mazarin, M., Avila, J., et al.: Tribochemistry of unsaturated fatty acids as friction modifiers in (bio)diesel fuel. RSC Adv. 7, 33120–33131 (2017)

    Article  Google Scholar 

  35. Hardy, W.B., Doubleday, I.: Boundary lubrication. The paraffin series. Proc. R. Soc. Lond. Ser. A 100, 550–574 (1922)

    Article  CAS  Google Scholar 

  36. Jahanmir, S.: Chain length effects in boundary lubrication. Wear 102, 331–349 (1985)

    Article  CAS  Google Scholar 

  37. Hirayama, T., Kawamura, R., Fujino, K., Matsuoka, T., Komiya, H., Onishi, H.: Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33, 10492–10500 (2017)

    Article  CAS  Google Scholar 

  38. Spikes, H.: Friction modifier additives. Tribol. Lett. 60, 5 (2015)

    Article  Google Scholar 

  39. Bavisotto, R., Rana, R., Hopper, N., Olson, D., Tysoe, W.T.: Adsorption and reaction pathways of 7-octenoic acid on copper. Phys. Chem. Chem. Phys. 23, 5834–5844 (2021)

    Article  CAS  Google Scholar 

  40. Bavisotto, R., Rana, R., Hopper, N., Hou, K., Tysoe, W.T. Influence of the terminal group on the thermal decomposition reactions of carboxylic acids on copper. Phys. Chem. Chem. Phys. (2021).

  41. Bavisotto, R., Rana, R., Hopper, N., Tysoe, W.T.: Structure and reaction pathways of octanoic acid on copper. Surf. Sci. 711, 121875 (2021)

    Article  CAS  Google Scholar 

  42. Immaraporn, B., Ye, P., Gellman, A.J.: The transition state for carboxylic acid deprotonation on Cu(100). J. Phys. Chem. B 108, 3504–3511 (2004)

    Article  CAS  Google Scholar 

  43. Parker, B., Immaraporn, B., Gellman, A.J.: Carboxylic acid deprotonation on the Ag(110) and Ag(111) surfaces. Langmuir 17, 6638–6646 (2001)

    Article  CAS  Google Scholar 

  44. Dubois, L.H., Ellis, T.H., Zegarski, B.R., Kevan, S.D.: New insights into the kinetics of formic acid decomposition on copper surfaces. Surf. Sci. 172, 385–397 (1986)

    Article  CAS  Google Scholar 

  45. Sexton, B.A., Hughes, A.E., Avery, N.R.: A spectroscopic study of the adsorption and reactions of methanol, formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces. Surf. Sci. Lett. 155, A268 (1985)

    Article  Google Scholar 

  46. Ying, D.H.S., Robert, J.M.: Thermal desorption study of formic acid decomposition on a clean Cu(110) surface. J. Catal. 61, 48–56 (1980)

    Article  CAS  Google Scholar 

  47. Stone, P., Poulston, S., Bennett, R.A., Price, N.J., Bowker, M.: An STM, TPD and XPS investigation of formic acid adsorption on the oxygen-precovered c(6×2) surface of Cu(110). Surf. Sci. 418, 71–83 (1998)

    Article  CAS  Google Scholar 

  48. Bowker, M., Madix, R.J.: The adsorption and oxidation of acetic acid and acetaldehyde on Cu(110). Appl. Surf. Sci. 8, 299–317 (1981)

    Article  CAS  Google Scholar 

  49. Lin, H.-P., Liu, Y.-F., Liu, Y.-X., Yang, Z.-X., Lin, J.-L.: Surface reaction mechanisms: 3-bromopropanoic and 2-bromopropanoic acids on Cu(100) and O/Cu(100). The Journal of Physical Chemistry C 125, 4567–4579 (2021)

    Article  CAS  Google Scholar 

  50. Cheng, H., Hu, Y.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication. Adv. Coll. Interface. Sci. 171–172, 53–65 (2012)

    Article  CAS  Google Scholar 

  51. Guo, L.-Y., Zhao, Y.-P.: Effect of chain length of self-assembled monolayers on adhesion force measurement by AFM. J. Adhes. Sci. Technol. 20, 1281–1293 (2006)

    Article  CAS  Google Scholar 

  52. Bhushan, B., Liu, H.: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B 63, 245412 (2001)

    Article  CAS  Google Scholar 

  53. Fry, B.M., Moody, G., Spikes, H.A., Wong, J.S.S.: Adsorption of organic friction modifier additives. Langmuir 36, 1147–1155 (2020)

    Article  CAS  Google Scholar 

  54. Rana, R., Bavisotto, R., Hou, K., Tysoe, W.T.: Surface chemistry at the solid–solid interface: mechanically induced reaction pathways of C8 carboxylic acid monolayers on copper. Phys. Chem. Chem. Phys. 23, 17803–17812 (2021)

    Article  CAS  Google Scholar 

  55. Rana, R., Bavisotto, R., Hopper, N., Tysoe, W.T.: Inducing high-energy-barrier tribochemical reaction pathways; acetic acid decomposition on copper. Tribol. Lett. 69, 32 (2021)

    Article  CAS  Google Scholar 

  56. Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997)

    Article  CAS  Google Scholar 

  57. Xiao, X., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 12, 235–237 (1996)

    Article  CAS  Google Scholar 

  58. Lee, S., Puck, A., Graupe, M., Colorado, R., Shon, Y.-S., Lee, T.R., et al.: Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold. Langmuir 17, 7364–7370 (2001)

    Article  CAS  Google Scholar 

  59. Huo, L., Du, P., Zhou, H., Zhang, K., Liu, P.: Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: effect of SAM alkyl chain length. Appl. Surf. Sci. 396, 865–869 (2017)

    Article  CAS  Google Scholar 

  60. Nakano, M., Ishida, T., Numata, T., Ando, Y., Sasaki, S.: Alkyl Chain Length Effect on Tribological Behavior of Alkanethiol Self-Assembled Monolayers on Au. Jpn. J. Appl. Phys. 42, 4734–4738 (2003)

    Article  CAS  Google Scholar 

  61. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sadaba, I., Lopez Granados, M.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2016)

    Article  CAS  Google Scholar 

  62. Leggett, G.J.: Friction force microscopy of self-assembled monolayers: probing molecular organisation at the nanometre scale. Anal. Chim. Acta 479, 17–38 (2003)

    Article  CAS  Google Scholar 

  63. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)

    Article  CAS  Google Scholar 

  64. Furlong, O.J., Miller, B.P., Tysoe, W.T.: Shear-induced surface-to-bulk transport at room temperature in a sliding metal-metal interface. Tribol. Lett. 41, 257–261 (2011)

    Article  CAS  Google Scholar 

  65. Rana, R., Long, D., Kotula, P., Xu, Y., Olson, D., Galipaud, J., et al.: Insights into the Mechanism of the Mechanochemical Formation of Metastable Phases. ACS Appl. Mater. Interfaces (2021).

  66. Kaltchev, M., Thompson, A.W., Tysoe, W.T.: Reflection-absorption infrared spectroscopy of ethylene on palladium (111) at high pressure. Surf. Sci. 391, 145–149 (1997)

    Article  CAS  Google Scholar 

  67. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)

    Article  CAS  Google Scholar 

  68. Kincaid, J.F., Eyring, H., Stearn, A.E.: The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem. Rev. 28, 301–365 (1941)

    Article  CAS  Google Scholar 

  69. Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979)

    Article  CAS  Google Scholar 

  70. Briggs, B., Seah, M.P.: Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy. John Wiley and Sons, New York (1996)

    Google Scholar 

  71. Carlson, T.A., McGuire, G.E.: Study of the x-ray photoelectron spectrum of tungsten—tungsten oxide as a function of thickness of the surface oxide layer. J. Electron Spectrosc. Relat. Phenom. 1, 161–168 (1972)

    Article  CAS  Google Scholar 

  72. Strohmeier, B.R.: An ESCA method for determining the oxide thickness on aluminum alloys. Surf. Interface Anal. 15, 51–56 (1990)

    Article  CAS  Google Scholar 

  73. Evans, S.D., Goppert-Berarducci, K.E., Urankar, E., Gerenser, L.J., Ulman, A., Snyder, R.G.: Monolayers having large in-plane dipole moments: characterization of sulfone-containing self-assembled monolayers of alkanethiols on gold by Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and wetting. Langmuir 7, 2700–2709 (1991)

    Article  CAS  Google Scholar 

  74. Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E.: Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc. 115, 9389–9401 (1993)

    Article  CAS  Google Scholar 

  75. Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  CAS  Google Scholar 

  76. Wood, K.A., Snyder, R.G., Strauss, H.L.: Analysis of the vibrational bandwidths of alkane–urea clathrates. J. Chem. Phys. 91, 5255–5267 (1989)

    Article  CAS  Google Scholar 

  77. Chandross, M., Grest, G.S., Stevens, M.J.: Friction between alkylsilane monolayers: molecular simulation of ordered monolayers. Langmuir 18, 8392–8399 (2002)

    Article  CAS  Google Scholar 

  78. Tutein, A.B., Stuart, S.J., Harrison, J.A.: Role of defects in compression and friction of anchored hydrocarbon chains on diamond. Langmuir 16, 291–296 (2000)

    Article  CAS  Google Scholar 

  79. Bonner, T., Baratoff, A.: Molecular dynamics study of scanning force microscopy on self-assembled monolayers. Surf. Sci. 377–379, 1082–1086 (1997)

    Article  Google Scholar 

  80. Mikulski, P.T., Harrison, J.A.: Packing-density effects on the friction of n-alkane monolayers. J. Am. Chem. Soc. 123, 6873–6881 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Civil, Mechanical and Manufacturing Innovation (CMMI) Division of the National Science Foundation under grant number 2020525 for support of this work. GDK thanks the Fulbright Foundation for support of this work. KH acknowledges support from the China Scholarship Council.

Funding

Division of Civil, Mechanical and Manufacturing Innovation (2020525) and Distinguished International Students Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Wilfred T. Tysoe.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical Approval

All ethical responsibilities were respected by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, K., Bavisotto, R., Manzi, S.J. et al. Prandtl–Tomlinson-Type Models for Coupled Molecular Sliding Friction: Chain-Length Dependence of Friction of Self-assembled Monolayers. Tribol Lett 70, 66 (2022). https://doi.org/10.1007/s11249-022-01609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01609-z

Keywords

Navigation