Skip to main content
Log in

Prandtl–Tomlinson-Type Models for Molecular Sliding Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A model sliding potential, based on Prandtl–Tomlinson type models, is proposed for analyzing the temperature- and velocity-dependences of sliding processes at the interface between a tip and an adsorbed molecular layer. The proposed simple periodic potential has a parabolic form up to a critical distance, corresponding to the onset of detachment, at which point it becomes flat. The simplicity of the model will enable it to be used to analyze complex molecular interfaces, such as molecular films, mechanically induced chemical reactions or biological interfaces such as muscles or transport molecules. A simple analytical model is presented for the resulting velocity- and temperature-dependences of the friction force for the sliding of a compliant atomic force microscopy tip over an array of molecular species adsorbed on a surface, when only considering transitions of the tip in the forward direction (overall sliding direction). The validity of the analysis is tested by using kinetic Monte Carlo (kMC) simulations of the sliding over the molecular potential. This simulation provides excellent agreement with the analytic model, except for some slight differences that arise from the way in which the simulations calculate the lateral force compared to the analytical model. However, significant deviations are found between the kMC simulations and the analytical model when the possibility of both forward and reverse transitions are included, in particular at high sliding velocities and low temperatures. The origin of these effects are discussed in the manuscript, but result in superlubricious behavior, that is, vanishing friction, in particular at low sliding velocities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data available in article or supplementary material.

References

  1. Furlong, O.J., Miller, B.P., Kotvis, P., Tysoe, W.T.: Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces. 3, 795–800 (2011)

    Article  CAS  Google Scholar 

  2. Furlong, O., Miller, B., Tysoe, W.T.: Shear-induced boundary film formation from dialkyl sulfides on copper. Wear 274–275, 183–187 (2012)

    Article  Google Scholar 

  3. Miller, B., Furlong, O., Tysoe, W.: The kinetics of shear-induced boundary film formation from dimethyl disulfide on copper. Tribol. Lett. 49, 39–46 (2013)

    Article  CAS  Google Scholar 

  4. Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: Shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119, 7115–7123 (2015)

    Article  CAS  Google Scholar 

  5. Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62, 1–9 (2016)

    Article  CAS  Google Scholar 

  6. Adams, H., Miller, B.P., Furlong, O.J., Fantauzzi, M., Navarra, G., Rossi, A., et al.: Modeling mechanochemical reaction mechanisms. ACS Appl. Mater. Interfaces. 9, 26531–26538 (2017)

    Article  CAS  Google Scholar 

  7. Yeon, J., He, X., Martini, A., Kim, S.H.: Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl. Mater. Interfaces. 9, 3142–3148 (2017)

    Article  CAS  Google Scholar 

  8. Chen, L., Wen, J., Zhang, P., Yu, B., Chen, C., Ma, T., et al.: Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat. Commun. 9, 1542 (2018)

    Article  Google Scholar 

  9. Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)

    Article  CAS  Google Scholar 

  10. Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E., Jr., Robinson, J.T., Walton, S.G., et al.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 1–7 (2015)

    Article  Google Scholar 

  11. Raghuraman, S., Elinski, M.B., Batteas, J.D., Felts, J.R.: Driving surface chemistry at the nanometer scale using localized heat and stress. Nano Lett. 17, 2111–2117 (2017)

    Article  CAS  Google Scholar 

  12. He, X., Kim, S.H.: Surface chemistry dependence of mechanochemical reaction of adsorbed molecules—an experimental study on tribopolymerization of α-Pinene on metal, metal oxide, and carbon surfaces. Langmuir 34, 2432–2440 (2018)

    Article  CAS  Google Scholar 

  13. Bell, G.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)

    Article  CAS  Google Scholar 

  14. Kuwahara, T., Romero, P.A., Makowski, S., Weihnacht, V., Moras, G., Moseler, M.: Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 10, 151 (2019)

    Article  Google Scholar 

  15. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  Google Scholar 

  16. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  CAS  Google Scholar 

  17. Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. 13, R619–R642 (2001)

    CAS  Google Scholar 

  18. Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001)

    Article  CAS  Google Scholar 

  19. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    Article  CAS  Google Scholar 

  20. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  21. Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  CAS  Google Scholar 

  22. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  CAS  Google Scholar 

  23. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71, 045413 (2005)

    Article  Google Scholar 

  24. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  CAS  Google Scholar 

  25. Porto, M., Zaloj, V., Urbakh, M., Klafter, J.: Macroscopic versus microscopic description of friction: from Tomlinson model to shearons. Tribol. Lett. 9, 45–54 (2000)

    Article  CAS  Google Scholar 

  26. Srinivasan, M., Walcott, S.: Binding site models of friction due to the formation and rupture of bonds: State-function formalism, force-velocity relations, response to slip velocity transients, and slip stability. Phys. Rev. E 80, 046124 (2009)

    Article  Google Scholar 

  27. Lacker, H.M., Peskin, C.S.: A mathematical method for the unique determination of cross-bridge properties from steady-state mechanical and energetic experiments on macroscopic muscle. Lectures Math. Life Sci. 16, 32 (1986)

    Google Scholar 

  28. Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)

    Article  CAS  Google Scholar 

  29. Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)

    Article  CAS  Google Scholar 

  30. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Temperature dependence of friction at the nanoscale: when the unexpected turns normal. Tribol. Lett. 39, 311–319 (2010)

    Article  Google Scholar 

  31. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys. Rev. B 84, 115417 (2011)

    Article  Google Scholar 

  32. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  Google Scholar 

  33. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

  34. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)

    Article  CAS  Google Scholar 

  35. Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction wear and tribochemistry. Tribol. Lett. 59, 1–14 (2015)

    Article  CAS  Google Scholar 

  36. Bliznyuk, V.N., Everson, M.P., Tsukruk, V.V.: Nanotribological properties of organic boundary lubricants: langmuir films versus self-assembled monolayers. J. Tribol. 120, 489–495 (1998)

    Article  CAS  Google Scholar 

  37. Zhang, L., Leng, Y., Jiang, S.: Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19, 9742–9747 (2003)

    Article  CAS  Google Scholar 

  38. Tsukruk, V.V., Everson, M.P., Lander, L.M., Brittain, W.J.: Nanotribological properties of composite molecular films: C60 anchored to a self-assembled monolayer. Langmuir 12, 3905–3911 (1996)

    Article  CAS  Google Scholar 

  39. van der Vegte, E.W., Subbotin, A., Hadziioannou, G., Ashton, P.R., Preece, J.A.: Nanotribological properties of unsymmetrical n-Dialkyl sulfide monolayers on gold: effect of chain length on adhesion, friction, and imaging. Langmuir 16, 3249–3256 (2000)

    Article  Google Scholar 

  40. Liu, Y., Evans, D.F., Song, Q., Grainger, D.W.: Structure and frictional properties of self-assembled surfactant monolayers. Langmuir 12, 1235–1244 (1996)

    Article  CAS  Google Scholar 

  41. Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)

    Article  CAS  Google Scholar 

  42. Pan, Y.-S., Xiong, D.-S., Ma, R.-Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear 262, 1021–1025 (2007)

    Article  CAS  Google Scholar 

  43. Pan, Y., Xiong, D.: Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage. Wear 266, 699–703 (2009)

    Article  CAS  Google Scholar 

  44. Gong, J., Iwasaki, Y., Osada, Y., Kurihara, K., Hamai, Y.: Friction of Gels. 3. Friction on solid surfaces. J. Phys. Chem. B 103, 6001–6006 (1999)

    Article  CAS  Google Scholar 

  45. Chang, D.P., Dolbow, J.E., Zauscher, S.: Switchable friction of stimulus-responsive hydrogels. Langmuir 23, 250–257 (2007)

    Article  CAS  Google Scholar 

  46. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter 13, 428–435 (2017)

    Article  CAS  Google Scholar 

  47. Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 96 (2018)

    Article  Google Scholar 

  48. Weymouth, A.J., Hofmann, T., Giessibl, F.J.: Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014)

    Article  CAS  Google Scholar 

  49. Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)

    Article  CAS  Google Scholar 

  50. Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  CAS  Google Scholar 

  51. Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer I. J. Chem. Phys. 24, 966–978 (1956)

    Article  CAS  Google Scholar 

  52. Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear 254, 859–862 (2003)

    Article  CAS  Google Scholar 

  53. Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 86, 035443 (2012)

    Article  Google Scholar 

  54. Krylov, S.Y., Frenken, J.W.M.: The physics of atomic-scale friction: Basic considerations and open questions. Phys. Status Solidi B 251, 711–736 (2014)

    Article  CAS  Google Scholar 

  55. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80, 153408 (2009)

    Article  Google Scholar 

  56. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177–180 (2010)

    Article  CAS  Google Scholar 

  57. Manzi, S., Tysoe, W., Furlong, O.: Temperature dependences in the Tomlinson/Prandtl model for atomic sliding friction. Tribol. Lett. 55, 363–369 (2014)

    Article  Google Scholar 

  58. Furlong, O., Manzi, S., Martini, A., Tysoe, W.: Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol. Lett. 60, 1–9 (2015)

    Article  Google Scholar 

  59. Sales, J.L., Uñac, R.O., Gargiulo, M.V., Bustos, V., Zgrablich, G.: Monte Carlo simulation of temperature programmed desorption spectra: a guide through the forest for monomolecular adsorption on a square lattice. Langmuir 12, 95–100 (1996)

    Article  CAS  Google Scholar 

  60. Bondi, A.: Van der Waals volumes and dadii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  61. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  Google Scholar 

  62. Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010)

    Article  CAS  Google Scholar 

  63. Pollak, E.: Variational transition state theory for activated rate processes. J. Chem. Phys. 93, 1116–1124 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Civil, Mechanical and Manufacturing Innovation (CMMI) Division of the National Science Foundation under Grant Nos. 1634340 and 2020525 for support of this work. GDK thanks the Fulbright Foundation for support of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Wilfred T. Tysoe.

Ethics declarations

Ethical Approval

All ethical responsibilities were respected by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11249_2021_1523_MOESM1_ESM.docx

Supplementary file1 See Supplementary Material for analysis of the P-T Model for a sinusoidal potential, a derivation of Eact (F) for molecular sliding, a derivation of the velocity dependence of sliding, and an analysis of the deviations from the analytical model. (DOCX 1136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzi, S.J., Carrera, S.E., Furlong, O.J. et al. Prandtl–Tomlinson-Type Models for Molecular Sliding Friction. Tribol Lett 69, 147 (2021). https://doi.org/10.1007/s11249-021-01523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01523-w

Keywords

Navigation