Skip to main content

Advertisement

Log in

Fluorine-Doped Amorphous Carbon-Coated Magnesium Silicate Hydroxide as Lubricant Additive and Atomic Simulation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nanolubricant additives have attracted wide attention because of their promising prospects in energy saving, emission reduction, and improvement of equipment reliability. In this study, the core–shell nanocomposites of a-C:F coating nano-magnesium silicate hydroxide (MSH@C:F) were prepared in subcritical water. Polytetrafluoroethylene (PTFE) was used as a carbon fluorine source to prepare shell of fluorine-doped amorphous carbon (a-C:F). SEM, TEM, XRD, and XPS were applied to characterize the nature of the composite powder MSH@C:F. The results of tribological tests show that MSH@C:F with appropriate F/C ratio has excellent tribological properties as lubricant additive, and the a-C:F shell plays a key role. Ab-initio molecular dynamics (AIMD) computation results show that OH in sodium hydroxide (NaOH) plays a major role in the defluorination of PTFE and the formation of carbonyl group (C=O). Meanwhile, classical molecular dynamics (CMD) simulation shows that MSH indirectly promotes defluorination of PTFE by producing Mg2+ and OH from the erosion of the surface of MSH in water.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Available.

Code Availability

Accelrys Materials Studio.

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  2. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption costs and emissions. Friction 5, 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  CAS  Google Scholar 

  3. Holmberg, K., Erdemir, A.: The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 135, 389–396 (2019). https://doi.org/10.1016/j.triboint.2019.03.024

    Article  Google Scholar 

  4. Johnson, B., Wu, H.X., Desanker, M., Pickens, D., Chung, Y.W., Wang, Q.J.: Direct formation of lubricious and wear-protective carbon films from phosphorus- and sulfur-free oil-soluble additives. Tribol. Lett. 66, 2 (2018). https://doi.org/10.1007/s11249-017-0945-2

    Article  CAS  Google Scholar 

  5. Holmberg, K., Andersson, P., Nylund, N.O., Mäkelä, K., Erdemir, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014). https://doi.org/10.1016/j.triboint.2014.05.004

    Article  Google Scholar 

  6. Wang, J., Qing, Y.A., Xiao, L.G., Wang, Y.G., Bao, X.F., Qin, Y.G., Zhang, J.Y., Zhang, K.: Design of new-type F-FLC artificial joint coatings via fluorine incorporation and fullerene-like structure construction. Suf. Coat. Tech. 385, 125419 (2020). https://doi.org/10.1016/j.surfcoat.2020.125419

    Article  CAS  Google Scholar 

  7. Alaa, M., Vineet, T., Bahaa, M.K.: Tribological characterization and rheology of hybrid calcium grease with graphene nanosheets and multi-walled carbon nanotubes as additives. J. Mater. Sci. Technol. 9, 6178–6185 (2020). https://doi.org/10.1016/j.jmrt.2020.04.020

    Article  CAS  Google Scholar 

  8. Chen, H.J., Ba, Z.W., Qiao, D., Feng, D.P., Song, Z.H., Zhang, J.: Study on the tribological properties of graphene oxide composite films by self-assembly. Tribol. Int. 151, 106533 (2020). https://doi.org/10.1016/j.triboint.2020.106533

    Article  CAS  Google Scholar 

  9. Lei, X.L., Shen, B., Chen, S.L., Wang, L., Sun, F.H.: Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication. Tribol. Int. 69, 118–127 (2014). https://doi.org/10.1016/j.triboint.2013.09.012

    Article  CAS  Google Scholar 

  10. Marcinauskas, L., Mathew, J.S., Milieška, M., Aikas, M., Kalin, M.: Effect of graphite concentration on the tribological performance of alumina coatings. J. Alloy. Compd. 827, 154135 (2020). https://doi.org/10.1016/j.jallcom.2020.154135

    Article  CAS  Google Scholar 

  11. Song, H., Chen, J., Liu, Z.Y., Ji, L., Li, H.X., Chen, J.M., Ling, G.P.: Fullerene-like nanostructure induced excellent friction behavior in high vacuum environment for hydrogenated carbon film. Vacuum 143, 36–39 (2017). https://doi.org/10.1016/j.vacuum.2017.05.037

    Article  CAS  Google Scholar 

  12. He, D.Q., He, C., Li, W.S., Shang, L.L., Wang, L.P., Zhang, G.A.: Tribological behaviors of in-situ textured DLC films under dry and lubricated conditions. Appl. Surf. Sci. 525, 146581 (2020). https://doi.org/10.1016/j.apsusc.2020.146581

    Article  CAS  Google Scholar 

  13. Wang, J.J., Ma, J.J., Huang, W.J., Wang, L.Q., He, H.R., Liu, C.L.: The investigation of the structures and tribological properties of F-DLC coatings deposited on Ti-6Al-4V alloys. Surf. Coat. Tech. 316, 22–29 (2017). https://doi.org/10.1016/j.surfcoat.2017.02.065

    Article  CAS  Google Scholar 

  14. Sun, H.Y., Li, T., Lei, F., Yang, M., Li, D.D., Huang, X.H., Sun, D.Z.: Graphite fluoride and fluorographene as a new class of solid lubricant additives for high-performance polyamide 66 composites with excellent mechanical and tribological properties. Polym. Int. 69, 457–466 (2020). https://doi.org/10.1002/pi.5975

    Article  CAS  Google Scholar 

  15. Zhang, J.Y., Qiang, L., Zhou, Y., Zhang, B., Wei, L.: Ultra-low friction of fluorine-doped hydrogenated carbon film with curved graphitic structure. Surf. Interface. Anal. 45, 1233–1237 (2013). https://doi.org/10.1002/sia.5260

    Article  CAS  Google Scholar 

  16. Zhou, S.G., Li, W.T., Zhao, W.J., Li, Q.F., Liu, C., Fang, Z.W., Gao, X.L.: Tribological behaviors of polyimide composite coatings containing carbon nanotubes and fluorinated graphene with hybrid phase or blend phase. Prog. Org. Coat. 147, 105800 (2020). https://doi.org/10.1016/j.porgcoat.2020.105800

    Article  CAS  Google Scholar 

  17. Wang, F., Wang, L.P., Xue, Q.J.: Fluorine and sulfur co-doped amorphous carbon films to achieve ultra-low friction under high vacuum. Carbon 96, 411–420 (2016). https://doi.org/10.1016/j.carbon.2015.09.084

    Article  CAS  Google Scholar 

  18. Qiang, L., Zhang, B., Gao, K.X., Gong, Z.B., Zhang, J.Y.: Hydrophobic, mechanical and tribological properties of fluorine incorporated hydrogenated fullerene-like carbon films. Friction. 1, 350–358 (2013). https://doi.org/10.1007/s40544-013-0031-1

    Article  CAS  Google Scholar 

  19. Wang, Y., Ling, X., Wang, Y.F., Zhang, J.Y.: Probing the effect of doped F and N on the structures and properties of fullerene-like hydrogenated carbon films. Diam. Relat. Mater. 79, 32–37 (2017). https://doi.org/10.1016/j.diamond.2017.08.015

    Article  CAS  Google Scholar 

  20. Zahid, R., Masjuki, H.H., Varman, M.: Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol. Lett. 58, 32 (2015). https://doi.org/10.1007/s11249-015-0506-5

    Article  CAS  Google Scholar 

  21. Hsieh, W.J., Wang, C.H., Lai, S.H., Wong, J.W., Shih, H.C., Huang, T.S.: Cathodoluminescence of fluorine doped amorphous carbon nanoparticles deposited by a filtered cathodic arc plasma system. Carbon 44, 107–112 (2006). https://doi.org/10.1016/j.carbon.2005.07.009

    Article  CAS  Google Scholar 

  22. De Oliveria, N.A.M., Schreiner, W.H., Justo, J.F., Rangel, E.C., Durrant, S.F.: Characterization of amorphous carbon films by PECVD and plasma ion implantation: The role of fluorine and sulfur doping. Mater. Chem. Phys. 227, 170–175 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.008

    Article  CAS  Google Scholar 

  23. Ghimire, D.C., Adhikari, S., Aryal, H.R., Kalita, G., Umeno, M.: Enhancement of fluorine doped amorphous carbon thin films from microwave surface wave plasma activated above room temperature. Diam. Relat. Mater. 18, 465–468 (2009). https://doi.org/10.1016/j.diamond.2008.10.006

    Article  CAS  Google Scholar 

  24. Veerasubramani, G.K., Krishnamoorthy, K., Pazhamalai, P., Sang, J.K.: Formation of self-lubricating PEO coating via in-situ incorporation of PTFE particles. Surf. Coat. Tech. 337, 379–388 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.022

    Article  CAS  Google Scholar 

  25. Qiu, M., Yang, Z.P., Lu, J.J., Li, Y.C., Zhou, D.W.: Influence of step load on tribological properties of self-lubricating radial spherical plain bearings with PTFE fabric liner. Tribol. Int. 113, 344–353 (2017). https://doi.org/10.1016/j.triboint.2017.02.047

    Article  CAS  Google Scholar 

  26. Lin, Z.B., Yue, H.Q., Gao, B.Z.: Enhancing tribological characteristics of PEEK by using PTFE composite as a sacrificial tribofilm-generating part in a novel dual-pins-on-disk tribometer. Wear 460–461, 203472 (2020). https://doi.org/10.1016/j.wear.2020.203472

    Article  CAS  Google Scholar 

  27. Liang, D., Dragos, A., Paul, B.S., Ali, A.H.: Study on the characterisation of the PTFE transfer film and the dimensional designing of surface texturing in a dry-lubricated bearing system. Wear 448–449, 203238 (2020). https://doi.org/10.1016/j.wear.2020.203238

    Article  CAS  Google Scholar 

  28. Shah, V., Panchal, T., Bharatiya, B., Patel, N.S., Shukla, A.D., Shah, D.O.: Colloidal PTFE dispersion in commercial engine oil: Lubrication by Pluronic adsorption at the interface. Colloid. Surface A 597, 124775 (2020). https://doi.org/10.1016/j.colsurfa.2020.124775

    Article  CAS  Google Scholar 

  29. Peng, S.G., Zhang, L., Xie, G.X., Guo, Y., Si, L.N., Luo, J.B.: Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate). Compos. Part. B 172, 316–322 (2019). https://doi.org/10.1016/j.compositesb.2019.04.047

    Article  CAS  Google Scholar 

  30. Naddafa, M., Alkhawwamb, A.: Characterization of superhydrophobic a-C: F thin film deposited on porous silicon via laser ablation of a PTFE target. Diam. Relat. Mater. 64, 57–63 (2016). https://doi.org/10.1016/j.diamond.2016.01.010

    Article  CAS  Google Scholar 

  31. Bodas, D.S., Mandale, A.B., Gangal, S.A.: Deposition of PTFE thin films by RF plasma sputtering on 1 0 0 silicon substrates. Appl. Surf. Sci. 245, 202–207 (2005). https://doi.org/10.1016/j.apsusc.2004.10.023

    Article  CAS  Google Scholar 

  32. Michels, A.F., Soave, P.A., Nardi, J., Jardim, P.L.G., Teixeira, S.R., Weibel, D.E., Horowitz, F.: Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces. J. Mater. Sci. 51, 1316–1323 (2016). https://doi.org/10.1007/s10853-015-9449-3

    Article  CAS  Google Scholar 

  33. Yang, X.G., Li, C., Wang, W., Yang, B.J., Zhang, S.Y., Qian, Y.T.: A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem. Commun. 3, 342–343 (2004). https://doi.org/10.1039/b313733c

    Article  CAS  Google Scholar 

  34. Wang, Q., Cao, F.Y., Chen, Q.W.: Formation of carbon micro-sphere chains by defluorination of PTFE in a magnesium and supercritical carbon dioxide system. Green. Chem. 7, 733–736 (2006). https://doi.org/10.1039/b506890h

    Article  CAS  Google Scholar 

  35. Chang, Q.Y., Zhang, H., Gao, R.Q.: Amorphous carbon doping nano-magnesium silicate hydroxide with significant tribological property. Tribol. Lett. (2019). https://doi.org/10.1007/s11249-019-1194-3

    Article  Google Scholar 

  36. Wang, B., Chang, Q.Y., Gao, K., Fang, H.R., Qing, T., Zhou, N.N.: The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol. Int. 119, 672–679 (2018). https://doi.org/10.1016/j.triboint.2017.11.020

    Article  CAS  Google Scholar 

  37. Yang, Z., Sun, Y.J., Ma, F., Lu, Y.F., Zhao, T.B.: Pyrolysis mechanisms of graphene oxide revealed by ReaxFF molecular dynamics simulation. J. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145247

    Article  Google Scholar 

  38. Xue, W.J., Zhang, Z.Q., Huang, H.L., Zhong, C.I., Mei, D.H.: Theoretical Insights into the Initial Hydrolytic Breakdown of HKUST-1. J. Phys. Chem. C 124, 1991–2001 (2020). https://doi.org/10.1021/acs.jpcc.9b09910

    Article  CAS  Google Scholar 

  39. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., Kubo, M.: Effect of tribochemical reaction on transfer-film formation by poly(tetrafluoroethylene). J. Phys. Chem. C. 118, 11820–11826 (2014). https://doi.org/10.1021/jp503331e

    Article  CAS  Google Scholar 

  40. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  41. Martin, M.G.: Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid. Phase. Equiliber. 248, 50–55 (2007). https://doi.org/10.1016/j.fluid.2006.07.014

    Article  CAS  Google Scholar 

  42. Zaremba, T., Krzakaa, A., Piotrowski, J., Garczorz, D.: Study on the thermal decomposition of chrysotile asbestos. J. Therm. Anal. Calorim. 101, 479–485 (2010). https://doi.org/10.1007/s10973-010-0819-4

    Article  CAS  Google Scholar 

  43. Tokuta, Y., Itoh, T., Shiozaki, T., Kawaguchi, M., Sasaki, S.: Low friction mechanism of chlorine-doped amorphous carbon films sliding against an aluminium alloy. Tribol. Int. 115, 573–579 (2017). https://doi.org/10.1016/j.triboint.2017.06.024

    Article  CAS  Google Scholar 

  44. Marciano, F.R., Lima-Oliveira, D.A., Da-Silva, N.S., Corat, E.J., Trava-Airoldi, V.J.: Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surf. Coat. Tech. 204, 18–19 (2010). https://doi.org/10.1016/j.surfcoat.2010.02.040

    Article  CAS  Google Scholar 

  45. James, C.S., Kan, M.C., Sung, M.: Fluorinated DLC for tribological applications. Int. J. Refract. Met. Hard 27, 421–426 (2009). https://doi.org/10.1016/j.ijrmhm.2008.11.008

    Article  CAS  Google Scholar 

  46. Tartaj, P., Cerpa, A., García-González, M.T., Serna, C.J.: Surface Instability of Serpentine in Aqueous Suspensions. J. Colloid. Interface Sci. 231, 176–181 (2000). https://doi.org/10.1006/jcis.2000.7109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Equipment Development Department of the Central Military Commission Foundation, China (Grant Nos. JZX7Y20190262063601, JZX7Y20190263069101), Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms Foundation, China (Grant No. BZ0388201801), and the Fundamental Research Funds for the Central Universities (Grant No. 2019YJS152).

Funding

This work was funded by Equipment Development Department of the Central Military Commission Foundation, China (Grant Nos. JZX7Y20190262063601, JZX7Y20190263069101), Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms Foundation, China (Grant No. BZ0388201801), and the Fundamental Research Funds for the Central Universities (Grant No. 2019YJS152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuying Chang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chang, Q. Fluorine-Doped Amorphous Carbon-Coated Magnesium Silicate Hydroxide as Lubricant Additive and Atomic Simulation. Tribol Lett 69, 11 (2021). https://doi.org/10.1007/s11249-020-01386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01386-7

Keywords

Navigation