Skip to main content
Log in

Amorphous Carbon Doping Nano-Magnesium Silicate Hydroxide with Significant Tribological Property

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nanocomposite lubricant additive consisting of Magnesium silicate hydroxide and amorphous carbon (MSH@C) was prepared. Amorphous carbon in the nanocomposite of MSH@C was obtained by hydrothermal decomposition of polytetrafluoroethylene (PTFE) under subcritical water condition. The MSH@C was characterized by Scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, Raman spectrometer, and X-ray photoelectron spectrometer. The analysis results show that addition of PTFE in the process of synthesizing MSH can inhibit the tubular crystallization of MSH@C powder. Tribological experiments show that the doping of amorphous carbon materials can significantly enhance the friction reduction and wear resistance of nanocomposite powders as lubricant additive, and is superior to MSH and fully formulated commercial lubricant 5W30. The tribofilm on the worn balls including amorphous carbon originated from MSH@C nanoparticles accounts for the significant tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Titirici, M.M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., Del Monte, F., Clark, J.H., MacLachlan, M.J.: Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015)

    Article  CAS  Google Scholar 

  2. Wang, R.X., Zhang, Y.H., Liao, Y.: Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives. Front. Energy (2017). https://doi.org/10.1007/s11708-017-0453-y

    Article  Google Scholar 

  3. Jiang, G.C., Yang, Y.Y.: Preparation and tribology properties of water-soluble fullerene derivative nanoball. Arab J. Chem. 10, S870–S876 (2017)

    Article  CAS  Google Scholar 

  4. Yang, Z., Li, W.H., Chen, C.S., Chen, X.H., Xu, L.S.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)

    Article  Google Scholar 

  5. Lin, J.S., Wang, L.W., Chen, G.H.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  CAS  Google Scholar 

  6. Lee, C.G., Hwang, Y.J., Choi, Y.M., Lee, J.K., Choi, C., Oh, J.M.: A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 10, 85–90 (2009)

    Article  Google Scholar 

  7. Yao, Y.L., Wang, X.M., Guo, J.J., Yang, X.W., Xu, B.S.: Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62, 2524–2527 (2008)

    Article  CAS  Google Scholar 

  8. Vengudusamy, B., Mufti, R.A., Lamb, G.D., Green, J.H., Spikes, H.A.: Friction properties of DLC/DLC contacts in base oil. Tribol. Int. 44, 922–932 (2011)

    Article  CAS  Google Scholar 

  9. Abdullah Tasdemir, H., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., Higuchi, T.: Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear 307, 1–9 (2013)

    Article  CAS  Google Scholar 

  10. Vetter, J.: 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)

    Article  CAS  Google Scholar 

  11. Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289 (2009)

    Article  CAS  Google Scholar 

  12. Zhao, H.Y., Lu, X.A., Wang, Y., Sun, B., Wu, X.H., Lu, H.F.: Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization. J. Mater. Sci. 52, 10787–10799 (2017)

    Article  CAS  Google Scholar 

  13. Machado, N.T., de Castro, D.A.R., Santos, M.C., Araújo, M.E., Lüder, U., Herklotz, L., Werner, M., Mumme, J., Hoffmann, T.: Process analysis of hydrothermal carbonization of corn Stover with subcritical H2O. J. Supercrit. Fluids 136, 110–122 (2018)

    Article  CAS  Google Scholar 

  14. Beckford, S., Cai, J., Chen, J., Zou, M.: Use of Au nanoparticle-filled PTFE films to produce low-friction and low-wear surface coatings. Tribol. Lett. 56, 223–230 (2014)

    Article  CAS  Google Scholar 

  15. Salah, N., Alshahrie, A., Abdel-wahab, M.S., Alharbi, N.D., Khan, Z.H.: Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives. Diam. Relat. Mater. 78, 97–104 (2017)

    Article  CAS  Google Scholar 

  16. Song, W., Yan, J.C., Ji, H.B.: Tribological study of the SOCNTs@MoS2 composite as a lubricant additive: synergistic effect. Ind. Eng. Chem. Res. 57, 6878–6887 (2018)

    Article  CAS  Google Scholar 

  17. Anand, G., Saxena, P.: A review on graphite and hybrid nano-materials as lubricant additives. IOP Conf. Ser. 149, 012201 (2016)

    Article  Google Scholar 

  18. Chang, Q.Y., Rudenko, P., Miller, D.J., Wen, J.G., Berman, D., Zhang, Y.P., Arey, B., Zhu, Z.H., Erdemir, A.: Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribol. Int. 110, 35–40 (2017)

    Article  CAS  Google Scholar 

  19. Van Der Walt, I.J., Bruinsma, O.S.L.: Depolymerization of clean unfilled PTFE waste in a continuous process. J. Appl. Polym. Sci. 102, 2752–2759 (2006)

    Article  Google Scholar 

  20. Sugama, T., Sabatini, R., Petrakis, L.: Decomposition of chrysotile asbestos by fluorosulfonic acid. Ind. Eng. Chem. Res. 37, 79–88 (1998)

    Article  CAS  Google Scholar 

  21. Yamaguchi, A., Kido, H., Ukita, Y., Kishihara, M., Utsumi, Y.: Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds. Appl. Phys. Lett. 108(5), 1–5 (2016)

    Article  Google Scholar 

  22. Anbalagan, G., Sivakumar, G., Prabakaran, A.R., Gunasekaran, S.: Spectroscopic characterization of natural chrysotile. Vib. Spectrosc. 52(2), 122–127 (2010)

    Article  CAS  Google Scholar 

  23. Ristić, M., Czakó-Nagy, I., Musić, S., Vértes, A.: Spectroscopic characterization of chrysotile asbestos from different regions. J. Mol. Struct. 993, 120–126 (2011)

    Article  Google Scholar 

  24. Liu, S., Gangopadhyay, S., Sreenivas, G., Ang, S., Naseem, H.: Infrared studies of hydrogenated amorphous carbon (a-C:H) and its alloys (a-C:H, N, F). Phys. Rev. B 55, 13020–13024 (1997)

    Article  CAS  Google Scholar 

  25. Tang, C.J., Neves, A.J., Carmo, M.C.: Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films. Appl. Phys. Lett. 86, 1–3 (2005)

    Google Scholar 

  26. Llamas-Jansa, I., Jäger, C., Mutschke, H., Henning, T.: Far-ultraviolet to near-infrared optical properties of carbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation with structural variations. Carbon 45, 1542–1557 (2007)

    Article  CAS  Google Scholar 

  27. Lua, A.C., Yang, T.: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274(2), 594–601 (2004)

    Article  CAS  Google Scholar 

  28. Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001)

    Article  Google Scholar 

  29. Jawhari, T., Roid, A., Casado, J.: Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 557–563 (1990)

    Google Scholar 

  30. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)

    Article  CAS  Google Scholar 

  31. Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordrred and amorphous carbon. Phys. Rev. B 61, 096–107 (1999)

    Google Scholar 

  32. Leung, T.Y., Man, W.F., Lim, P.K., Chan, W.C., Gaspari, F., Zukotynski, S.: Determination of the sp3/sp2 ratio of a-C: H by XPS and XAES. J. Non Cryst. Solids 254, 156–160 (1999)

    Article  CAS  Google Scholar 

  33. Schulze, R.K., Hill, M.A., Field, R.D., Papin, P.A., Hanrahan, R.J., Byler, D.D.: Characterization of carbonated serpentine using XPS and TEM. Energy Convers. Manage. 45, 3169–3179 (2004)

    Article  CAS  Google Scholar 

  34. Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)

    Article  CAS  Google Scholar 

  35. Baratto, C., Lottici, P.P., Bersani, D., Antonioli, G., Montenero, A.: Sol-Gel preparation of α-Fe2 O3 thin films: structural characterization by XAFS and Raman. J. Sol-Gel. Sci. Technol. 4, 667–671 (1998)

    Article  Google Scholar 

  36. Hanesch, M.: Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941–948 (2009)

    Article  CAS  Google Scholar 

  37. Thanos, I.C.G.: Electrochemical reduction of thermally prepared oxides of iron and iron-chromium alloys studied by in situ Raman spectroscopy. Electrochim. Acta 31, 1585–1595 (1986)

    Article  CAS  Google Scholar 

  38. Maslar, J.E., Hurst, W.S., Bowers, J.J., Hendricks, J.H.: In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion. Corrosion 58, 739–747 (2002)

    Article  CAS  Google Scholar 

  39. Wang, B., Chang, Q.Y., Gao, K., Fang, H.R., Qing, T., Zhou, N.N.: The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol. Int. 119, 672–679 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Equipment Development Department of the Central Military Commission Foundation, China (Grant No. JZX7Y20190262063601, JZX7Y20190263069101) and Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms Foundation, China (Grant No. BZ0388201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuying Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Q., Zhang, H. & Gao, R. Amorphous Carbon Doping Nano-Magnesium Silicate Hydroxide with Significant Tribological Property. Tribol Lett 67, 76 (2019). https://doi.org/10.1007/s11249-019-1194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1194-3

Keywords

Navigation