Skip to main content
Log in

The Correlation Between Molecular Structure and Tribological Properties of Graphene Oxide with Different Oxidation Degree

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Eight kinds of GOs with different oxidation degree were synthesized. Molecular structure characterization indicated that with more usage of H2SO4, less usage of KMnO4, and more reaction time at high temperatures (95 °C), the oxidation degree of GO decreased. Tribological tests showed that GO water suspensions could reduce the friction coefficient of water by 33–46% as well as decrease the wear rate of water by 36–64%. Lubrication mechanism verified the formation of GO tribofilms on the sliding surface. GO with higher oxidation degree had a better adsorption capacity and the optimum concentration was 0.15 mg/ml. Moreover, some oxygen-containing groups of GO were decomposed to form a graphene-like structure, which would increase the tribological property of GO suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  3. Zhang, W., Schroeder, C., Schlueter, B., Knoch, M., Dusza, J., Sedlak, R., Muelhaupt, R., Kailer, A.: Effect of mechanochemically functionalized multilayer graphene on the tribological properties of silicon carbide/graphene nanocomposites in aqueous environment. Tribol. Lett. 66(4), 121 (2018). https://doi.org/10.1007/s11249-018-1074-2

    Article  Google Scholar 

  4. Lerf, A., He, H.Y., Forster, M., Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998). https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  5. Song, H.-J., Li, N.: Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl. Phys. A 105(4), 827–832 (2011). https://doi.org/10.1007/s00339-011-6636-1

    Article  CAS  Google Scholar 

  6. Cheng, H., Zhao, F., Xue, J., Shi, G., Jiang, L., Qu, L.: One single graphene oxide film for responsive actuation. ACS Nano 10(10), 9529–9535 (2016). https://doi.org/10.1021/acsnano.6b04769

    Article  CAS  Google Scholar 

  7. Chevalier, Y., Bolzinger, M.-A.: Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A 439, 23–34 (2013). https://doi.org/10.1016/j.colsurfa.2013.02.054

    Article  CAS  Google Scholar 

  8. Bourlinos, A.B., Gournis, D., Petridis, D., Szabo, T., Szeri, A., Dekany, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15), 6050–6055 (2003). https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  9. Dabhi, S.D., Jha, P.K.: Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups. Phys. E 93, 332–338 (2017). https://doi.org/10.1016/j.physe.2017.07.002

    Article  CAS  Google Scholar 

  10. Xiang, Z., Zhang, L., Li, Y., Yuan, T., Zhang, W., Sun, J.: Reduced graphene oxide-reinforced polymeric films with excellent mechanical robustness and rapid and highly efficient healing properties. ACS Nano 11(7), 7134–7141 (2017). https://doi.org/10.1021/acsnano.7b02970

    Article  CAS  Google Scholar 

  11. Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014). https://doi.org/10.1016/j.cej.2013.10.030

    Article  CAS  Google Scholar 

  12. Yang, H., Li, J., Zeng, X.: Correlation between molecular structure and interfacial properties of edge or basal plane modified graphene oxide. Appl. Nano Mater. 1(6), 2763–2773 (2018)

    Article  CAS  Google Scholar 

  13. Eigler, S., Enzelberger-Heim, M., Grimm, S., Hofmann, P., Kroener, W., Geworski, A., Dotzer, C., Roeckert, M., Xiao, J., Papp, C., Lytken, O., Steinrueck, H.-P., Mueller, P., Hirsch, A.: Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013). https://doi.org/10.1002/adma.201300155

    Article  CAS  Google Scholar 

  14. Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-M., Song, L.-P., Wei, F.: Facile synthesis of graphene nanosheets via fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). https://doi.org/10.1021/nn102339t

    Article  CAS  Google Scholar 

  15. Cote, L.J., Cruz-Silva, R., Huang, J.: Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009). https://doi.org/10.1021/ja902348k

    Article  CAS  Google Scholar 

  16. Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H.Y., Shin, H.S., Chhowalla, M.: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306), 1413–1416 (2016). https://doi.org/10.1126/science.aah3398

    Article  CAS  Google Scholar 

  17. Zhao, J., Li, Y., Mao, J., He, Y., Luo, J.: Synthesis of thermally reduced graphite oxide in sulfuric acid and its application as an efficient lubrication additive. Tribol. Int. 116, 303–309 (2017). https://doi.org/10.1016/j.triboint.2017.06.023

    Article  CAS  Google Scholar 

  18. Toelle, F.J., Fabritius, M., Muelhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Func. Mater. 22(6), 1136–1144 (2012). https://doi.org/10.1002/adfm.201102888

    Article  CAS  Google Scholar 

  19. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. 149, 249–259 (1859)

    Article  Google Scholar 

  20. Staudenmaier, L.: Verfahren zur Darstellung der Graphitsaure. Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  CAS  Google Scholar 

  21. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  22. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  23. Chen, J., Yao, B., Li, C., Shi, G.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  CAS  Google Scholar 

  24. Eigler, S.: Controlled chemistry approach to the oxo-functionalization of graphene. Chem. A Eur. J. 22(21), 7012–7027 (2016). https://doi.org/10.1002/chem.201600174

    Article  CAS  Google Scholar 

  25. Eigler, S., Dotzer, C., Hirsch, A.: Visualization of defect densities in reduced graphene oxide. Carbon 50(10), 3666–3673 (2012). https://doi.org/10.1016/j.carbon.2012.03.039

    Article  CAS  Google Scholar 

  26. Eigler, S., Dotzer, C., Hirsch, A., Enzelberger, M., Mueller, P.: Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 24(7), 1276–1282 (2012). https://doi.org/10.1021/cm203223z

    Article  CAS  Google Scholar 

  27. Schlueter, B., Muelhaupt, R., Kailer, A.: Synthesis and tribological characterization of stable dispersions of thermally reduced graphite oxide. Tribol. Lett. 53(1), 353–363 (2014). https://doi.org/10.1007/s11249-013-0275-y

    Article  CAS  Google Scholar 

  28. Choudhary, S., Mungse, H.P., Khatri, O.P.: Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J. Mater. Chem. 22(39), 21032–21039 (2012). https://doi.org/10.1039/c2jm34741e

    Article  CAS  Google Scholar 

  29. Wu, Y., Zeng, X., Ren, T., de Vries, E., van der Heide, E.: The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion. Tribol. Int. 105, 304–316 (2017). https://doi.org/10.1016/j.triboint.2016.10.024

    Article  CAS  Google Scholar 

  30. Chen, Q., Wang, X., Wang, Z., Liu, Y., You, T.: Preparation of water-soluble nanographite and its application in water-based cutting fluid. Nanoscale Res. Lett. 8(1), 52 (2013). https://doi.org/10.1186/1556-276x-8-52

    Article  Google Scholar 

  31. Lv, T., Huang, S., Hu, X., Ma, Y., Xu, X.: Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids. Int. J. Adv. Manuf. Technol. 96(5–8), 2931–2942 (2018). https://doi.org/10.1007/s00170-018-1725-3

    Article  Google Scholar 

  32. Chen, J., Chi, F., Huang, L., Zhang, M., Yao, B., Li, Y., Li, C., Shi, G.: Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon 110, 34–40 (2016). https://doi.org/10.1016/j.carbon.2016.08.096

    Article  CAS  Google Scholar 

  33. Jianchang, L., Xiangqiong, Z., Tianhui, R., van der Heide, E.: The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2(3), 137–161 (2014). https://doi.org/10.3390/lubricants2030137

    Article  Google Scholar 

  34. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  35. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/b917103g

    Article  CAS  Google Scholar 

  36. Chen, J., Zhang, Y., Zhang, M., Yao, B., Li, Y., Huang, L., Li, C., Shi, G.: Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem. Sci. 7(3), 1874–1881 (2016). https://doi.org/10.1039/c5sc03828f

    Article  CAS  Google Scholar 

  37. Xu, D., Wang, C., Espejo, C., Wang, J., Neville, A., Morina, A.: Understanding the friction reduction mechanism based on molybdenum disulfide tribofilm formation and removal. Langmuir 34(45), 13523–13533 (2018). https://doi.org/10.1021/acs.langmuir.8b02329

    Article  CAS  Google Scholar 

  38. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts.3. fully flooded results. J. Lubr. Technol. Trans. ASME 99(2), 264–276 (1977). https://doi.org/10.1115/1.3453074

    Article  CAS  Google Scholar 

  39. Zhu, D., Wang, Q.J.: Elastohydrodynamic lubrication: a gateway to interfacial mechanics-review and prospect. J. Tribol. Trans. ASME 133(4), 041001 (2011). https://doi.org/10.1115/1.4004457

    Article  Google Scholar 

  40. Mao, J., Zhao, J., Wang, W., He, Y., Luo, J.: Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribol. Int. 119, 614–621 (2018). https://doi.org/10.1016/j.triboint.2017.11.031

    Article  CAS  Google Scholar 

  41. Zhang, G., Xu, Y., Xiang, X., Zheng, G., Zeng, X., Li, Z., Ren, T., Zhang, Y.: Tribological performances of highly dispersed graphene oxide derivatives in vegetable oil. Tribol. Int. 126, 39–48 (2018). https://doi.org/10.1016/j.triboint.2018.05.004

    Article  CAS  Google Scholar 

  42. Cai, M., Liang, Y., Zhou, F., Liu, W.: A novel imidazolium salt with antioxidation and anticorrosion dual functionalities as the additive in poly(ethylene glycol) for steel/steel contacts. Wear 306(1–2), 197–208 (2013). https://doi.org/10.1016/j.wear.2012.09.001

    Article  CAS  Google Scholar 

  43. Yu, Q., Fan, M., Li, D., Song, Z., Cai, M., Zhou, F., Liu, W.: Thermoreversible gel lubricants through universal supramolecular assembly of a nonionic surfactant in a variety of base lubricating liquids. ACS Appl. Mater. Interfaces. 6(18), 15783–15794 (2014). https://doi.org/10.1021/am502832z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 21703279) and the Shanghai Municipal “Science and Technology Innovation Action Plan” International Cooperation Project (No. 15540723600) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiusheng Li or Xiangqiong Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Yang, H., Liu, C. et al. The Correlation Between Molecular Structure and Tribological Properties of Graphene Oxide with Different Oxidation Degree. Tribol Lett 67, 85 (2019). https://doi.org/10.1007/s11249-019-1199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1199-y

Keywords

Navigation