Skip to main content
Log in

Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Dry milling of graphite in a ball mill represents a versatile one-step mechanochemical process for fabricating mechanochemically functionalized multilayer graphene (MG) bearing different functional groups. The variation of the milling parameters enables to control particle size, shape, functionality, specific surface area, and dispersability of the MG functional fillers. In this study, MG was used as functional nanofiller for the production of SiC/MG nanocomposites. The nanocomposites exhibit significantly improved tribological behavior. The results of rotating pin on disc sliding tests show that with SiC/MG a noticeable improvement of friction and wear behavior under water-lubricated conditions like in slide bearings and face seals can be achieved. Sliding friction systems with the variant SiC + 2% MG–CO2-120 h appear to have the most promising tribological properties, due to the reduced size of the homogeneously distributed graphite particles, which promote the formation of advantageous surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roewer, G., Herzog, U., Trommer, K., Müller, E., Frühauf, S.: Silicon Carbide—A Survey of Synthetic Approaches, Properties and Applications. In: High Performance Non-Oxide Ceramics I. Springer, Berlin (2002)

    Google Scholar 

  2. Schwetz, K.A.: Silicon Carbide Based Hard Materials. In: Handbook of Ceramic Hard Materials. Wiley, Weinheim (2008)

    Google Scholar 

  3. Friedrichs, P.: Silicon Carbide. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  4. Porwal, H., Grasso, S., Reece, M.J.: Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 8, 443–454 (2013)

    Article  Google Scholar 

  5. Ciudad, E., Sánchez-González, E., Borrero-López, O., Guiberteau, F., Nygren, M., Ortiz, A.L.: Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3 + 5Al2O3 or Y3Al5O12 additives. Scr. Mater. 8, 598–601 (2013)

    Article  Google Scholar 

  6. Borrero-López, O., Ortiz, A.L., Guiberteau, F., Padture, N.P.: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview. J. Eur. Ceram. Soc. 11, 3351–3357 (2007)

    Article  Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 3, 183–191 (2007)

    Article  Google Scholar 

  8. Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 5, 2865–2873 (2010)

    Article  Google Scholar 

  9. Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R., Yu, Z., Xiang, D., Cheng, J.: Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Depos. 1–3, 53–56 (2009)

    Article  Google Scholar 

  10. Tölle, F.J., Fabritius, M., Mülhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 6, 1136–1144 (2012)

    Article  Google Scholar 

  11. Aguilar-Bolados, H., Lopez-Manchado, M.A., Brasero, J., Avilés, F., Yazdani-Pedram, M.: Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B 87, 350–356 (2016)

    Article  Google Scholar 

  12. Zhan, D., Ni, Z., Chen, W., Sun, L., Luo, Z., Lai, L., Yu, T., Wee, A.T.S., Shen, Z.: Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 4, 1362–1366 (2011)

    Article  Google Scholar 

  13. Mauro, M., Cipolletti, V., Galimberti, M., Longo, P., Guerra, G.: Chemically reduced graphite oxide with improved shape anisotropy. J. Phys. Chem. C 46, 24809–24813 (2012)

    Article  Google Scholar 

  14. Wei, G., Yu, J., Gu, M., Ai, X., Xu, X., Tang, T.B.: Dielectric relaxation characteristics of chemically reduced graphite oxide. Carbon, 95, 374–379 (2015)

    Article  Google Scholar 

  15. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 6, 1339 (1958)

    Article  Google Scholar 

  16. Jeon, I.-Y., Choi, H.-J., Ju, M.J., Choi, I.T., Lim, K., Ko, J., Kim, H.K., Kim, J.C., Lee, J.-J., Shin, D., Jung, S.-M., Seo, J.-M., Kim, M.-J., Park, N., Dai, L., Baek, J.-B.: Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci. Rep. 3, 2260 (2013)

    Article  Google Scholar 

  17. Jeon, I.-Y., Shin, Y.-R., Sohn, G.-J., Choi, H.-J., Bae, S.-Y., Mahmood, J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Wook Chang, D., Dai, L., Baek, J.-B.: Edge-carboxylated graphene nanosheets via ball milling. PNAS 15, 5588–5593 (2012)

    Article  Google Scholar 

  18. Jeon, I.-Y., Choi, H.-J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Dai, L., Baek, J.-B.: Large-scale production of edge-Selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 4, 1386–1393 (2013)

    Article  Google Scholar 

  19. Appel, A.-K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 22, 4931–4939 (2012)

    Article  Google Scholar 

  20. Beckert, F., Bodendorfer, S., Zhang, W., Thomann, R., Mülhaupt, R.: Mechanochemical route to graphene-supported iron catalysts for olefin polymerization and in situ formation of carbon/polyolefin nanocomposites. Macromolecules 20, 7036–7042 (2014)

    Article  Google Scholar 

  21. Steurer, P., Wissert, R., Thomann, R., Mülhaupt, R.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 4–5, 316–327 (2009)

    Article  Google Scholar 

  22. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 7100, 282–286 (2006)

    Article  Google Scholar 

  23. Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 2, 666–686 (2012)

    Article  Google Scholar 

  24. Markandan, K., Chin, J.K., Tan, M.T.: Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 1, 84–106 (2017)

    Article  Google Scholar 

  25. Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 5, 241–302 (2017)

    Article  Google Scholar 

  26. Miranzo, P., Belmonte, M., Osendi, M., Isabel: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 12, 3649–3672 (2017)

    Article  Google Scholar 

  27. Kvetková, L., Duszová, A., Hvizdoš, P., Dusza, J., Kun, P., Balázsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr. Mater. 10, 793–796 (2012)

    Article  Google Scholar 

  28. Román-Manso, B., Domingues, E., Figueiredo, F.M., Belmonte, M., Miranzo, P.: Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 10, 2723 (2015)

    Article  Google Scholar 

  29. Amann, T., Kailer, A., Herrmann, M.: Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide. J. Bio- Tribo-Corros. 4, 30 (2015)

    Article  Google Scholar 

  30. Sedlák, R., Kovalčíková, A., Balko, J., Rutkowski, P., Dubiel, A., Zientara, D., Girman, V., Múdra, E., Dusza, J.: Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 65, 57–63 (2017)

    Article  Google Scholar 

  31. Porwal, H., Tatarko, P., Saggar, R., Grasso, S., Kumar Mani, M., Dlouhý, I., Dusza, J., Reece, M.J.: Tribological properties of silica–graphene nano-platelet composites. Ceram. Int. 8, 12067–12074 (2014)

    Article  Google Scholar 

  32. Miranzo, P., García, E., Ramírez, C., González-Julián, J., Belmonte, M., Osendi, M.I.: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 8, 1847 (2012)

    Article  Google Scholar 

  33. Balázsi, C., Fogarassy, Z., Tapasztó, O., Kailer, A., Schröder, C., Parchoviansky, M., Galusek, D., Dusza, J., Balázsi, K.: Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J. Eur. Ceram. Soc. 12, 3797–3804 (2017)

    Article  Google Scholar 

  34. Llorente, J., Román-Manso, B., Miranzo, P., Belmonte, M.: Tribological performance under dry sliding conditions of graphene/silicon carbide composites. J. Eur. Ceram. Soc. (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.040

    Article  Google Scholar 

  35. Llorente, J., Belmonte, M.: Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J. Eur. Ceram. Soc. 10, 3441–3446 (2018)

    Article  Google Scholar 

  36. Maros, B., Németh, M., Károly, A.K., Bódis, Z., Maros, E., Tapasztó, Z., Balázsi, K.O.: Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 93, 269–281 (2016)

    Article  Google Scholar 

  37. Hvizdoš, P., Dusza, J., Balázsi, C.: Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Ceram. Soc. 12, 2359–2364 (2013)

    Article  Google Scholar 

  38. Beckert, F., Trenkle, S., Thomann, R., Mülhaupt, R.: Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/SBR nanocomposites. Macromol. Mater. Eng. 12, 1513–1520 (2014)

    Article  Google Scholar 

  39. Tschoppe, K., Beckert, F., Beckert, M., Mülhaupt, R.: Thermally reduced graphite oxide and mechanochemically functionalized graphene as functional fillers for epoxy nanocomposites. Macromol. Mater. Eng. 2, 140–152 (2015)

    Article  Google Scholar 

  40. Pereira, dosS., Tonello, K., Padovano, E., Badini, C., Biamino, S., Pavese, M., Fino, P.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016)

    Article  Google Scholar 

  41. Munro, R.G.: Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 5, 1195–1203 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from project ERA.NET-GRACE which is funded by the Federal Ministry of Education and Research (BMBF) under the funding code 03X0156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Schröder, C., Schlüter, B. et al. Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment. Tribol Lett 66, 121 (2018). https://doi.org/10.1007/s11249-018-1074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1074-2

Keywords

Navigation