Skip to main content
Log in

Stearic-Acid-Modified Graphene Oxide with High Dispersion Stability and Good Water-Lubricating Property

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, stearic acid (SA) was used to improve the dispersion and tribological performance of graphene oxide (GO). The results exhibited that the SA could improve the dispersion of GO in water by the typical steric hindrance effect. As water-based lubricating additives, the GO modified by SA showed good tribological performance and load-carrying capacity, which had a low coefficient of friction and no obvious wear scar even sliding under the load of 400 mN for 2 h, indicating a long lubricating life. These superior performances were ascribed to the good dispersion of SA-modified GO in water and the synergistic effect of the excellent anti-wear property of GO and the good lubricating performance of SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.L. Cui, H. Li, C.Y. Gong, J.W. Huang, and D.S. Xiong, A Biomimetic Bilayer Coating on Laser-Textured Ti6Al4V Alloy With Excellent Surface Wettability and Biotribological Properties for Artificial Joints, Ceram. Int., 2022, 48, p 26264–26273. https://doi.org/10.1016/j.ceramint.2022.05.309

    Article  CAS  Google Scholar 

  2. Y.T. Peng and Z.H. Ni, Tribological Properties of Stearic Acid Modified Multi-Walled Carbon Nanotubes in Water, J. Tribol., 2013, 135, p 012001. https://doi.org/10.1115/1.4007676

    Article  CAS  Google Scholar 

  3. H. Kinoshita, Y. Nishina, A.A. Alias, and M. Fujii, Tribological Properties of Monolayer Graphene Oxide Sheets as Water-Based Lubricant Additives, Carbon, 2014, 66, p 720–723. https://doi.org/10.1016/j.carbon.2013.08.045

    Article  CAS  Google Scholar 

  4. H. Khanmohammadi, W. Wijanarko, and N. Espallargas, Ionic Liquids as Additives in Water-Based Lubricants: From Surface Adsorption to Tribofilm Formation, Tribol. Lett., 2020, 130, p 68. https://doi.org/10.1007/s11249-020-01377-8

    Article  CAS  Google Scholar 

  5. R.B. Qiang, L.F. Hu, K.M. Hou, J.Q. Wang, and S.R. Yang, Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact, Tribol. Lett., 2019, 64, p 67. https://doi.org/10.1007/s40544-014-0039-1

    Article  CAS  Google Scholar 

  6. Y.Y. Bao, J.L. Sun, and L.H. Kong, Effects of Nano-SiO2 as Water-Based Lubricant Additive on Surface Qualities of Strips after Hot Rolling, Tribol. Int., 2017, 114, p 257–263. https://doi.org/10.1016/j.triboint.2017.04.026

    Article  CAS  Google Scholar 

  7. J.H. Wang, J.L. Li, X.B. Wang, and W.M. Liu, Tribological Properties of Water-Soluble TiO2 Nanoparticles as Additives in Water, Ind. Lubr. Tribol., 2010, 62, p 292–297. https://doi.org/10.1108/00368791011064455

    Article  Google Scholar 

  8. S. Xiong, B.S. Zhang, S. Luo, H. Wu, and Z. Zhang, Preparation, Characterization, and Tribological Properties of Silica-Nanoparticle-Reinforced B-N-co-Doped Reduced Graphene Oxide as a Multifunctional Additive for Enhanced Lubrication, Friction, 2021, 9, p 239–249. https://doi.org/10.1007/s40544-019-0331-1

    Article  CAS  Google Scholar 

  9. Y. Wang, L.L. Cui, G.G. Cheng, N.Y. Yuan, J.N. Ding, and N.S. Pesika, Water-Based Lubrication of Hard Carbon Microspheres as Lubricating Additives, Tribol. Lett., 2018, 148, p 2–10. https://doi.org/10.1007/s11249-018-1102-2

    Article  CAS  Google Scholar 

  10. P. Haghdadeh, M. Ghaffari, B. Ramezanzadeh, G. Bahlakeh, and M.R. Saeb, The Role of Functionalized Graphene Oxide on the Mechanical and Anti-Corrosion Properties of Polyurethane Coating, J. Taiwan. Inst. Chem. Eng., 2018, 86, p 199–212. https://doi.org/10.1016/j.jtice.2018.02.009

    Article  CAS  Google Scholar 

  11. F.H. Su, G.F. Chen, and P. Huang, Lubricating Performances of Graphene Oxide and Onion-Like Carbon as Water-Based Lubricant Additives for Smooth and Sand-Blasted Steel Discs, Friction, 2020, 8(1), p 47–57. https://doi.org/10.1007/s40544-018-0237-3

    Article  CAS  Google Scholar 

  12. Y. Wang, Z.P. Gu, J. Liu, J. Jiang, N.Y. Yuan, J.B. Pu, and J.N. Ding, An Organic/Inorganic Composite Multi-Layer Coating to Improve the Corrosion Resistance of AZ31B Mg Alloy, Surf. Coat. Tech., 2019, 360, p 276–284. https://doi.org/10.1016/j.surfcoat.2018.12.125

    Article  CAS  Google Scholar 

  13. C.L. Gan, T. Liang, W. Li, X.Q. Fan, X. Li, D.S. Li, and M.H. Zhu, Hydroxyl-Terminated Ionic Liquids Functionalized Graphene Oxide with Good Dispersion and Lubrication Function, Tribol. Int., 2020, 148, p 106350. https://doi.org/10.1016/j.triboint.2020.106350

    Article  CAS  Google Scholar 

  14. P.M. Harshal, G. Kanika, S. Raghuvir, P.S. Om, S. Hiroyuki, and P.K. Om, Alkylated Graphene Oxide and Reduced Graphene Oxide: Grafting Density, Dispersion Stability to Enhancement of Lubrication Properties, J. Colloid. Interf. Sci., 2019, 541, p 150–162. https://doi.org/10.1016/j.jcis.2019.01.064

    Article  CAS  Google Scholar 

  15. Z.W. Dong, Y. Wan, S.Y. Yang, and J.Y. Zhang, Enhanced Friction-Reducing Behavior of Stearic Acid Film on Textured Steel, Tribol. Lett., 2013, 50, p 299–304. https://doi.org/10.1007/s11249-013-0124-z

    Article  CAS  Google Scholar 

  16. F.P. Bowden and D. Tabor, Friction, Lubrication and Wear: a Survey of Work During the Last Decade, J. Appl. Phys., 1966, 17, p 1521. https://doi.org/10.1088/0508-3443/17/12/301

    Article  CAS  Google Scholar 

  17. R.R. Sahoo and S.K. Biswas, Frictional Response of Fatty Acids on Steel, J. Colloid. Interf. Sci., 2009, 333, p 707–718. https://doi.org/10.1016/j.jcis.2009.01.046

    Article  CAS  Google Scholar 

  18. S.M. Lundgren, M. Ruths, K. Danerlov, and K. Persson, Effects of Unsaturation on Flm Structure and Friction of Fatty Acids in a Model Base Oil, J. Colloid. Interf. Sci., 2008, 326, p 530–536. https://doi.org/10.1016/j.jcis.2008.05.068

    Article  CAS  Google Scholar 

  19. M. Ruths, S. Lundgren, K. Danerlov, and K. Persson, Friction of Fatty Acids in Nanometer-Sized Contacts of Different Adhesive Strength, Langmuir, 2007, 24, p 1509–1516. https://doi.org/10.1021/la7023633

    Article  CAS  PubMed  Google Scholar 

  20. A. Zuin, T. Cousseau, A. Sinatora, S.H. Toma, K. Araki, and H.E. Toma, Lipophilic Magnetite Nanoparticles Coated with Stearic Acid: A Potential Agent for Friction and Wear Reduction, Tribol. Int., 2017, 112, p 10–19. https://doi.org/10.1016/j.triboint.2017.03.028

    Article  CAS  Google Scholar 

  21. C. Tadokoro, S. Araya, M. Watanabe, H. Okubo, K. Nakano, and S. Sasaki, Synergy of Two Fatty Acids as Additives on Lubricity of a Nematic Liquid Crystal 5CB, Lubr. Sci., 2018, 30, p 83–90. https://doi.org/10.1002/ls.1406

    Article  CAS  Google Scholar 

  22. J.S. Lin, L.W. Wang, and G.H. Chen, Modification of Graphene Platelets and their tribological properties as a Lubricant Additive, Tribol. Int., 2011, 41, p 209–215. https://doi.org/10.1007/s11249-010-9702-5

    Article  CAS  Google Scholar 

  23. M.M. Yang, Z.Z. Zhang, X.T. Zhu, X.H. Men, and G.N. Ren, In Situ Reduction and Functionalization of Graphene Oxide to Improve the Tribological Behavior of a Phenol Formaldehyde Composite Coating, Friction, 2015, 3(1), p 72–81. https://doi.org/10.1007/s40544-015-0076-4

    Article  CAS  Google Scholar 

  24. B.X. Li, T.X. Liu, L.Y. Hu, Y.F. Wang, and S.B. Nie, Facile Preparation and Adjustable Thermal Property of Stearic Acid-Graphene Oxide Composite as Shape-Stabilized Phase Change Material, Chem. Eng. J., 2013, 215–216, p 819–826. https://doi.org/10.1016/j.cej.2012.11.077

    Article  CAS  Google Scholar 

  25. L. Zhang, Y. He, L. Zhu, Z.L. Jiao, W.Z. Deng, C.P. Pu, C.M. Han, and S. Tang, Alkyl Phosphate Modified Graphene Oxide as Friction and Wear Reduction Additives in Oil, J. Mater. Sci., 2019, 54, p 4526–4536. https://doi.org/10.1007/s10853-018-03216-7

    Article  CAS  Google Scholar 

  26. J.W. Zhu, G.Y. Zeng, F.D. Nie, X.M. Xu, S. Cheng, Q.F. Han, and X. Wang, Decorating Graphene Oxide with CuO Nanoparticles in a Water-Isopropanol System, Nanoscale, 2010, 2, p 988–994. https://doi.org/10.1039/b9nr00414a

    Article  CAS  PubMed  Google Scholar 

  27. B.X. Li, T.X. Liu, Y.F. Wang, and Z.F. Wang, ZnO/Graphene-Oxide Nanocomposite with Remarkably Enhanced Visible-Light-Driven Photocatalytic Performance, J. Colloid. Interf. Sci., 2012, 377, p 114–121. https://doi.org/10.1016/j.jcis.2012.03.060

    Article  CAS  Google Scholar 

  28. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, The Structure of Suspended Graphene Sheets, Nature, 2007, 446, p 60–63. https://doi.org/10.1038/nature05545

    Article  CAS  PubMed  Google Scholar 

  29. B.J. Jiang, C.G. Tian, W. Zhou, J.Q. Wang, Y. Xie, Q.J. Pan, Z.Y. Ren, Y.Z. Dong, D. Fu, J.L. Han, and H.G. Fu, In Situ Growth of TiO2 in Interlayers of Expanded Graphite for the Fabrication of TiO2-graphene with Enhanced Photocatalytic Activity, Chem. Eur. J., 2011, 17, p 8379–8387. https://doi.org/10.1002/chem.201100250

    Article  CAS  PubMed  Google Scholar 

  30. Y. Wang, J.B. Pu, L. Xia, J.N. Ding, N.Y. Yuan, Y.Y. Zhu, and G.G. Cheng, Fabrication and Tribological Study of Graphene Oxide/Multiply-Alkylated Cyclopentanes Multilayer Lubrication Films on Si Substrates, Tribol. Lett., 2014, 53, p 207–214. https://doi.org/10.1007/s11249-013-0258-z

    Article  CAS  Google Scholar 

  31. C.S. Chen, X.H. Chen, L.S. Xu, Z. Yang, and W.H. Li, Modification of Multi-Walled Carbon Nanotubes with Fatty Acid and Their Tribological Properties as Lubricant Additive, Carbon, 2005, 43, p 1660–1666. https://doi.org/10.1016/j.carbon.2005.01.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA150002), the Changzhou science and technology support plan (CE20225060), the Topnotch Academic Programs Project of Jiangsu Higher Education Institutions and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wang or Jianning Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1669 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gu, Z., Cheng, G. et al. Stearic-Acid-Modified Graphene Oxide with High Dispersion Stability and Good Water-Lubricating Property. J. of Materi Eng and Perform 33, 2817–2823 (2024). https://doi.org/10.1007/s11665-023-08182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08182-z

Keywords

Navigation