Skip to main content
Log in

The Size Effect of SiO2 Particles on Friction Mechanisms of a Composite Friction Material

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this paper, the effect of SiO2 particle size on friction mechanisms was investigated. Five different size scales (10 µm, 80 µm, 180–700 µm, 700 µm–2.0 mm, and 3.0 mm) were selected to prepare non-commercial friction materials. Friction testing for these materials was conducted on a pad-on-disc-type friction tester under certain conditions. In order to identify the friction behaviour during the friction process, worn surfaces after test were observed using SEM. Results revealed that the friction mechanisms changed with particle size. In addition, a simple physical model was developed to provide quantitative analysis for the friction coefficient of materials containing large particles. Further, the predictability of this model was investigated across a range of formulations and controlling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cho, M.H., Kim, S.J., Kim, D., Jang, H.: Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear 258, 1682–1687 (2005)

    Article  Google Scholar 

  2. Nidhi, M., J, Bijwe, Mazumdar, N.: Influence of amount and modification of resin on fade and recovery behavior of non-asbestos organic (NAO) friction materials. Tribol. Lett. 23, 215–222 (2006)

    Article  Google Scholar 

  3. Bijwe, J., Nidhi, M., Majumdar, N., Satapathy, B.K.: Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear 259, 1068–1078 (2005)

    Article  Google Scholar 

  4. Singh, T., Patnaik, A., Chauhan, R., Rishiraj, A.: Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials. J. King Saud Univ. Eng. Sci. 29, 183–190 (2017)

    Google Scholar 

  5. Zhu, Z.C., Xu, L., Chen, G.A.: Effect of different whiskers on the physical and tribological properties of non-metallic friction materials. Mater. Des. 32, 54–61 (2011)

    Article  Google Scholar 

  6. Öztürk, B., Arslan, F., Öztürk, S.: Effects of different kinds of fibres on mechanical and tribological properties of brake friction materials. Tribol. Trans. 56, 536–545 (2013)

    Article  Google Scholar 

  7. Zhao, G., Hussainova, I., Antonov, M., Wang, Q.H., Wang, T.M.: Friction and wear of fiber reinforced polyimide composites. Wear 301, 122–129 (2013)

    Article  Google Scholar 

  8. Baklouti, M., Cristol, A.L., Desplanques, Y., Elleuch, R.: Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear 330–331, 507–514 (2015)

    Article  Google Scholar 

  9. Hee, K.W., Filip, P.: Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear 259, 1088–1096 (2005)

    Article  Google Scholar 

  10. Boz, M., Kurt, A.: The effect of Al2O3 on the friction performance of automotive brake friction materials. Tribol. Int. 40, 1161–1169 (2007)

    Article  Google Scholar 

  11. Hamid, M.K.A., Stachowiak, G.W., Syahrullail, S.: The effect of external grit particle size on friction coefficients and grit embedment of brake friction material. Procedia Eng. 68, 7–11 (2013)

    Article  Google Scholar 

  12. Matějka, V., Lu, Y.F., Jiao, L., Huang, L., Martynková, G.S.: Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications. Tribol. Int. 43, 144–151 (2010)

    Article  Google Scholar 

  13. Ma, Y.N., Martynková, G.S., Valášková, M., Matějka, V., Lu, Y.F.: Effects of ZrSiO4 in non-metallic brake friction materials on friction performance. Tribol. Int. 41, 166–174 (2008)

    Article  Google Scholar 

  14. Shin, M.W., Kim, H., Jang, H.: Effect of the abrasive size on the friction effectiveness and instability of brake friction materials: a case study with Zircon. Tribol. Lett. 55, 371–379 (2014)

    Article  Google Scholar 

  15. Lee, E.J., Hwang, H.J., Lee, W.G., Cho, K.H., Jang, H.: Morphology and toughness of abrasive particles and their effects on the friction and wear of friction materials: a case study with zircon and quartz. Tribol. Lett. 37, 637–644 (2010)

    Article  Google Scholar 

  16. Cho, K.H., Jang, H., Hong, Y.S., Kim, S.J., Basch, R.H., Fash, J.W.: The size effect of zircon particles on the friction characteristics of brake lining materials. Wear 264, 291–297 (2008)

    Article  Google Scholar 

  17. Bijwe, J., Aranganathan, N., Sharma, S., Dureja, N., Kumar, R.: Nano-abrasives in friction materials-influence on tribological properties. Wear 296, 693–701 (2012)

    Article  Google Scholar 

  18. Ertan, R., Yavuz, N.: An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials. Wear 268, 1524–1532 (2010)

    Article  Google Scholar 

  19. Wang, Z.H., Hou, G.H., Yang, Z.R., Jiang, Q., Zhang, F., Xie, M.H., Yao, Z.J.: Influence of slag weight fraction on mechanical, thermal and tribological properties of polymer based friction materials. Mater. Des. 90, 76–83 (2016)

    Article  Google Scholar 

  20. Wang, F.H., Liu, Y.: Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber. Mater. Des. 57, 449–455 (2014)

    Article  Google Scholar 

  21. Eriksson, M., Lord, J., Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001)

    Article  Google Scholar 

  22. Saffar, A., Shojaei, A.: Effect of rubber component on the performance of brake friction materials. Wear 274–275, 286–297 (2012)

    Article  Google Scholar 

  23. Glaseser, W.A.: Characterization of Tribological Materials. Harbin Institute of Technology Press, Harbin (2014)

    Google Scholar 

  24. Eriksson, M., Jacobson, S.: Tribological surfaces of organic brake pads. Tribol. Int. 33, 817–827 (2000)

    Article  Google Scholar 

  25. Kragelʹskiĭ, V.I., Kombalov, V.S., Dobychin, M.N.: Friction and Wear Calculation Methods. Pergamon Press, New York (1982)

    Google Scholar 

  26. Blau, P.J.: The significance and use of the friction coefficient. Tribol. Int. 34, 585–591 (2001)

    Article  Google Scholar 

  27. Briscoe, B., Scruton, B., Willis, F.R.: The shear strength of thin lubricant films. Proc. R. Soc. Lond. Ser. A 333, 99–114 (1973)

    Article  Google Scholar 

  28. Gopal, P., Dharani, L.R., Blum, F.D.: Load, speed and temperature sensitivities of a carbon-fiber reinforced phenolic friction material. Wear 181–183, 913–921 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program (“863” Program) of China under grant number SS2015AA042502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zhou, W., Liu, J. et al. The Size Effect of SiO2 Particles on Friction Mechanisms of a Composite Friction Material. Tribol Lett 66, 35 (2018). https://doi.org/10.1007/s11249-018-0987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-0987-0

Keywords

Navigation