Skip to main content
Log in

Friction Joint Between Basalt-Reinforced Composite and Aluminum

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictional load transfer behavior of the grip. To carry out the study, a custom-built test rig was used to examine the relation between pullout force and clamping force. The anchoring method was found to be successful. The paper presents details on the custom-built test rig, along with the use of digital image correlation for displacement monitoring. Pullout results and validation tests are presented. In the discussion, the results and the importance of the grips surface finish with regard to pullout force are discussed. The discussion was backed by investigations on wear patterns using SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Schmidt, J.W., Bennitz, A., Täljsten, B., Goltermann, P., Pedersen, H.: Mechanical anchorage of FRP tendons—a literature review. Constr. Build. Mater. 32, 110–121 (2012)

    Article  Google Scholar 

  2. Nordin, H.: Strengthening structures with externally prestressed tendons, literature review. Technical Report 2005: 06, Lulea University of Technology (6.3. 3 Grout-Potted Anchorages, 37–38) (2005)

  3. Mitchell, R.: High-strength end fittings for FRP rod and rope. J. Eng. Mech. Div. 100, 687–706 (1974)

    Google Scholar 

  4. Rostasy, F.S., Kepp, B.: Verhalten dynamisch beanspruchter GFK-Spannglieder: Abschlussbericht zum Forschungsvorhaben; Untersuchung im Auftr. der DFG (Az.: Ro 288/18-1). Institut für Baustoffe, Massivbau und Brandschutz (1986)

  5. Rostásy, F.: Draft guidelines for the acceptance testing of FRP posttensioning tendons. J. Compos. Constr. 2, 2–6 (1998)

    Article  Google Scholar 

  6. Rostasy, F.S.: New approach in the already published recommendations for anchorage assembly. In: Proceedings of 9th Congress of Federation Internationale de La Precontrainte pp. 95–98 (1982)

  7. Taha, M.: New concrete anchors for carbon fiber-reinforced polymer post-tensioning tendons—part 1: state-of-the-art review/design. ACI Struct. J. 100, 86–95 (2003)

    Google Scholar 

  8. Taha, M.: New concrete anchors for carbon fiber-reinforced polymer post-tensioning tendons—part 2: development/experimental investigation. ACI Struct. J. 100, 96–104 (2003)

    Google Scholar 

  9. Burgoyne, C.: Structural use of parafil ropes. Constr. Build. Mater. 1, 3–13 (1987)

    Article  Google Scholar 

  10. Sayed-Ahmed, E.: A new steel anchorage system for post-tensioning applications using carbon fibre reinforced plastic tendons. Can. J. Civ. Eng. 25, 113–127 (1998)

    Article  Google Scholar 

  11. Al-Mayah, A., Soudki, K., Plumtree, A.: Effect of sleeve material on interfacial contact behavior of CFRP-metal couples. J. Mater. Civ. Eng. 18, 825–830 (2006)

    Article  Google Scholar 

  12. Al-Mayah, A., Soudki, K.A., Plumtree, A.: Experimental and analytical investigation of a stainless steel anchorage for CFRP prestressing tendons. PCI J. 46, 88–100 (2001)

    Article  Google Scholar 

  13. Al-Mayah, A., Soudki, K., Plumtree, A.: Effect of rod profile and strength on the contact behavior of CFRP-metal couples. Compos. Struct. 82, 19–27 (2008)

    Article  Google Scholar 

  14. Portnov, G.G., Kulakov, V.L., Arnautov, A.K.: A refined stress–strain analysis in the load transfer zone of flat specimens of high-strength unidirectional composites in uniaxial tension 2. Finite-element parametric analysis. Mech. Compos. Mater. 43, 29–40 (2007)

    Article  Google Scholar 

  15. Schön, J.: Coefficient of friction for aluminum in contact with a carbon fiber epoxy composite. Tribol. Int. 37, 395–404 (2004)

    Article  Google Scholar 

  16. Schön, J.: Coefficient of friction of composite delamination surfaces. Wear 237, 77–89 (2000)

    Article  Google Scholar 

  17. ISO: ISO 4287: Geometriske produktspecifikationer (GPS). Overfladebeskaffenhed. Profilmetode. Termer, definitioner og overfladebeskaffenhedsparametre (1998)

  18. Bowers, R.: Coefficient of friction of high polymers as a function of pressure. J. Appl. Phys. 42, 4961 (1971)

    Article  Google Scholar 

  19. Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 1–4 (2011)

    Article  Google Scholar 

  20. Al-Mayah, A.: Effect of sandblasting on interfacial contact behavior of carbon-fiber-reinforced polymer-metal couples. J. Compos. Constr. 9, 289–295 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the Danish Agency for Science, Technology and Innovation, Grant Number 0604-00909, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Costache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costache, A., Glejbøl, K., Sivebæk, I.M. et al. Friction Joint Between Basalt-Reinforced Composite and Aluminum. Tribol Lett 59, 30 (2015). https://doi.org/10.1007/s11249-015-0556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0556-8

Keywords

Navigation