Skip to main content
Log in

Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Drilling is considered as one of the most challenging problems in aerospace structures where stringent tolerances are required for fasteners such as rivets and bolts to join the mating parts for final assembly. Fiber-reinforced polymers are widely used in aeronautical applications due to their superior properties. One of the major challenges in machining such polymers is the poor drilled-hole quality which reduces the strength of the composite and leads to part rejection at the assembly stage. In addition, rapid tool wear due to the abrasive nature of composites requires frequent tool change which results in high tooling and machining costs. This review intended to give in-depth details on the progress of drilling of fiber-reinforced polymers with special attention given to carbon fiber–reinforced polymers. The objective is to give a comprehensive understanding of the role of drilling parameters and composite properties on the drilling-induced damage in machined holes. Additionally, the review examines the drilling process parameters and its optimization techniques, and the effects of dust particles on human health during the machining process. This review will provide scientific and industrial communities with advantages and disadvantages through better drilled-hole quality inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davim JP (2009) Machining composites materials. Wiley-ISTE, London

    Google Scholar 

  2. Callister WD, Rethwisch DG (2007) Materials science and engineering: an introduction, vol 7. John wiley & sons New York, USA

    Google Scholar 

  3. Callister DW Jr (2007) Materials science and engineering: an introduction. John Wiley & Sons Inc–New York, New York

    Google Scholar 

  4. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC press, Boca Raton

    Google Scholar 

  5. Harris M, Qureshi MAM, Saleem MQ, Khan SA, Bhutta MMA (2017) Carbon fiber-reinforced polymer composite drilling via aluminum chromium nitride-coated tools: Hole quality and tool wear assessment. J Reinf Plast Compos 36(19):1403–1420

    Google Scholar 

  6. Vankanti VK, Ganta V (2014) Optimization of process parameters in drilling of GFRP composite using Taguchi method. J Mater Res Technol 3(1):35–41

    Google Scholar 

  7. Giasin K, Ayvar-Soberanis S (2017) Microstructural investigation of drilling induced damage in fibre metal laminates constituents. Compos A: Appl Sci Manuf 97:166–178

    Google Scholar 

  8. Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151

    Google Scholar 

  9. Jerome P (2001) Composite materials in the airbus A380-from history to future. In: Beijing: Proceedings 13th International Conference on Composite Materials (ICCM-13).

  10. Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing, Sawston

    Google Scholar 

  11. Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci Eng 136(3):034001

    Google Scholar 

  12. Giasin K, Ayvar-Soberanis S (2017) An investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA. Compos Struct 159:745–760

    Google Scholar 

  13. Giasin K, Ayvar-Soberanis S, French T, Phadnis V (2017) 3d finite element modelling of cutting forces in drilling fibre metal laminates and experimental hole quality analysis. Appl Compos Mater 24(1):113–137

    Google Scholar 

  14. Giasin K, Hodzic A, Phadnis V, Ayvar-Soberanis S (2016) Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. Int J Adv Manuf Technol 87(5-8):2041–2061

    Google Scholar 

  15. Liu D, Tang Y, Cong W (2012) A review of mechanical drilling for composite laminates. Compos Struct 94(4):1265–1279

    Google Scholar 

  16. Giasin K, Ayvar-Soberanis S, Hodzic A (2015) An experimental study on drilling of unidirectional GLARE fibre metal laminates. Compos Struct 133:794–808

    Google Scholar 

  17. Feito N, Díaz-Álvarez J, Díaz-Álvarez A, Cantero JL, Miguélez MH (2014) Experimental analysis of the influence of drill point angle and wear on the drilling of woven CFRPs. Materials 7(6):4258–4271

    Google Scholar 

  18. Gaitonde V, Karnik S, Rubio JC, Correia AE, Abrao A, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203(1-3):431–438

    Google Scholar 

  19. Arul S, Vijayaraghavan L, Malhotra S, Krishnamurthy R (2006) The effect of vibratory drilling on hole quality in polymeric composites. Int J Mach Tools Manuf 46(3-4):252–259

    Google Scholar 

  20. Khashaba U (2013) Drilling of polymer matrix composites: a review. J Compos Mater 47(15):1817–1832

    Google Scholar 

  21. M'Saoubi R, Axinte D, Soo SL, Nobel C, Attia H, Kappmeyer G, Engin S, Sim W-M (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann 64(2):557–580

    Google Scholar 

  22. Xu J, Mkaddem A, El Mansori M (2016) Recent advances in drilling hybrid FRP/Ti composite: a state-of-the-art review. Compos Struct 135:316–338

    Google Scholar 

  23. Panchagnula KK, Palaniyandi K (2018) Drilling on fiber reinforced polymer/nanopolymer composite laminates: a review. J Mater Res Technol 7(2):180–189

    Google Scholar 

  24. Patel DA, Buch VR (2018) Drilling of glass fiber reinforced polymer composite (gfrp): A review. Int J Recent Sci Res 9(3(F)):25059–25062. https://doi.org/10.24327/ijrsr.2018.0903.1783

    Article  Google Scholar 

  25. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2018) Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach. Silicon 10(5):2295–2305

    Google Scholar 

  26. Karataş MA, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technol 14(4):318–326

    Google Scholar 

  27. Strong AB (2008) Fundamentals of composites manufacturing: materials, methods and applications. Society of Manufacturing Engineers, USA

    Google Scholar 

  28. Wang G-D, Kirwa MS (2018) Comparisons of the use of twist, pilot-hole and step-drill on influence of carbon fiber-reinforced polymer drilling hole quality. J Compos Mater 52(11):1465–1480

    Google Scholar 

  29. Niu C (1988) Airframe structural design: practical design information and data on aircraft structures. Conmilit Press, Hong Kong

    Google Scholar 

  30. Wang X, Kwon PY, Sturtevant C, Lantrip J (2013) Tool wear of coated drills in drilling CFRP. J Manuf Process 15(1):127–135

    Google Scholar 

  31. Turki Y, Habak M, Velasco R, Aboura Z, Khellil K, Vantomme P (2014) Experimental investigation of drilling damage and stitching effects on the mechanical behavior of carbon/epoxy composites. Int J Mach Tools Manuf 87:61–72

    Google Scholar 

  32. Ramirez C, Poulachon G, Rossi F, M'Saoubi R (2014) Tool wear monitoring and hole surface quality during CFRP drilling. Procedia CIRP 13:163–168

    Google Scholar 

  33. Wei YY, Xu JY, Cai XJ, An QL, Chen M (2014) Effect of drills with different drill bits on delamination in drilling composite materials. In: Key Engineering Materials. Trans Tech Publ, pp 173-178

  34. Abhishek K, Datta S, Mahapatra SS (2015) Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. Int J Adv Manuf Technol 76(1-4):401–416

    Google Scholar 

  35. Gaugel S, Sripathy P, Haeger A, Meinhard D, Bernthaler T, Lissek F, Kaufeld M, Knoblauch V, Schneider G (2016) A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Compos Struct 155:173–183

    Google Scholar 

  36. Fernández-Pérez J, Cantero J, Díaz-Álvarez J, Miguelez M (2017) Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Compos Struct 178:157–161

    Google Scholar 

  37. Qiu X, Li P, Niu Q, Chen A, Ouyang P, Li C, Ko TJ (2018) Influence of machining parameters and tool structure on cutting force and hole wall damage in drilling CFRP with stepped drills. Int J Adv Manuf Technol 97(1–4):857–865 1-9

    Google Scholar 

  38. Xu J, Li C, Mi S, An Q, Chen M (2018) Study of drilling-induced defects for CFRP composites using new criteria. Compos Struct 201:1076–1087

    Google Scholar 

  39. Hocheng H, Puw H, Huang Y (1993) Preliminary study on milling of unidirectional carbon fibre-reinforced plastics. Compos Manuf 4(2):103–108

    Google Scholar 

  40. Sheikh-Ahmad JY (2009) Machining of polymer composites. Springer, Boston

    Google Scholar 

  41. Wang X, Zhang L (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43(10):1015–1022

    Google Scholar 

  42. Ghafarizadeh S, Lebrun G, Chatelain J-F (2016) Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic. J Compos Mater 50(8):1059–1071

    Google Scholar 

  43. Gao C, Xiao J, Xu J, Ke Y (2016) Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation. Int J Adv Manuf Technol 83(5-8):1113–1125

    Google Scholar 

  44. Palanikumar K (2007) Modeling and analysis for surface roughness in machining glass fibre reinforced plastics using response surface methodology. Mater Des 28(10):2611–2618. https://doi.org/10.1016/j.matdes.2006.10.001

    Article  Google Scholar 

  45. Gao H, Bao Y, Feng Z (2011) A study of drilling uni-directional carbon/epoxy composites. Int J Abras Technol 4(1):1–13

    Google Scholar 

  46. Alberdi A, Artaza T, Suárez A, Rivero A, Girot F (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. Int J Adv Manuf Technol 86(1-4):691–704

    Google Scholar 

  47. Mk NK, Ch CH, Jaharah A, AKM NA (2012) Tool wear and surface roughness on milling carbon fiber-reinforced plastic using chilled air. J Asian Sci Res 2(11):593

    Google Scholar 

  48. Sreejith P, Krishnamurthy R, Malhotra S, Narayanasamy K (2000) Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites. J Mater Process Technol 104(1-2):53–58

    Google Scholar 

  49. Krishnaraj V, Zitoune R, Davim JP (2013) Drilling of polymer-matrix composites. Springer

  50. Khan ZM (1991) A study of the drilling of advanced carbon fibre composites. University of Salford, Salford

    Google Scholar 

  51. Giasin K (2017) Machining fibre metal laminates and Al2024-T3 aluminium alloy, Doctoral dissertation, University of Sheffield, UK

  52. Davim JP (2009) Drilling of Composite Materials. NOVA Publishers, New York

    Google Scholar 

  53. Latha B, Senthilkumar V, Palanikumar K (2011) Modeling and optimization of process parameters for delamination in drilling glass fiber reinforced plastic (GFRP) composites. Mach Sci Technol 15(2):172–191

    Google Scholar 

  54. Caggiano A, Angelone R, Teti R (2017) Image Analysis for CFRP Drilled Hole Quality Assessment. Procedia CIRP 62:440–445

    Google Scholar 

  55. Melentiev R, Priarone PC, Robiglio M, Settineri L (2016) Effects of tool geometry and process parameters on delamination in CFRP drilling: An overview. Procedia CIRP 45:31–34

    Google Scholar 

  56. Kavad B, Pandey A, Tadavi M, Jakharia H (2014) A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technology 14:457–464

    Google Scholar 

  57. Azmi A (2012) Machinability study of fibre-reinforced polymer matrix composites, Doctoral dissertation, ResearchSpace@ Auckland, New Zealand

  58. Srinivasan T, Palanikumar K, Rajagopal K, Latha B (2017) Optimization of delamination factor in drilling GFR–polypropylene composites. Mater Manuf Process 32(2):226–233

    Google Scholar 

  59. Chen W-C (1997) Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int J Mach Tools Manuf 37(8):1097–1108

    Google Scholar 

  60. de Silva DNR (2013) Image processing methodology for assessment of drilling induced damage in CFRP, Thesis 2013, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa

  61. El-Sonbaty I, Khashaba U, Machaly T (2004) Factors affecting the machinability of GFR/epoxy composites. Compos Struct 63(3-4):329–338

    Google Scholar 

  62. Faraz A, Biermann D, Weinert K (2009) Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tools Manuf 49(15):1185–1196

    Google Scholar 

  63. Mehta M, Reinhart T, Soni A (1992) Effect of fastener hole drilling anomalies on structural integrity of PMR-15/Gr composite laminates. Machining of composite materials(A 95-15178 02-37), Materials Park, OH. ASM Int 1992:113–126

    Google Scholar 

  64. Mohan N, Kulkarni S, Ramachandra A (2007) Delamination analysis in drilling process of glass fiber reinforced plastic (GFRP) composite materials. J Mater Process Technol 186(1-3):265–271

    Google Scholar 

  65. Davim JP, Rubio JC, Abrao A (2007) A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol 67(9):1939–1945

    Google Scholar 

  66. Tsao C, Kuo K, Hsu I (2012) Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill. Int J Adv Manuf Technol 59(5-8):617–622

    Google Scholar 

  67. Geng D, Liu Y, Shao Z, Lu Z, Cai J, Li X, Jiang X, Zhang D (2019) Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos Struct 216:168–186. https://doi.org/10.1016/j.compstruct.2019.02.099

    Article  Google Scholar 

  68. Scott I, Scala C (1982) A review of non-destructive testing of composite materials. NDT Int 15(2):75–86

    Google Scholar 

  69. Tsao CC, Hocheng H (2005) Computerized tomography and C-Scan for measuring delamination in the drilling of composite materials using various drills. Int J Mach Tools Manuf 45(11):1282–1287. https://doi.org/10.1016/j.ijmachtools.2005.01.009

    Article  Google Scholar 

  70. Seif M, Khashaba U, Rojas-Oviedo R (2007) Measuring delamination in carbon/epoxy composites using a shadow moiré laser based imaging technique. Compos Struct 79(1):113–118

    Google Scholar 

  71. Meola C, Carlomagno GM, Squillace A, Prisco U, Morace RE (2005) Analysis of composites with infrared thermography. In. Wiley Online Library, pp 273-286

  72. Durão LM, Magalhães AG, Tavares JMRS, Marques AT (2008) Analyzing objects in images for estimating the delamination influence on load carrying capacity of composite laminates. ELCVIA: Electronic letters on computer vision and image analysis 7(2):11–21

    Google Scholar 

  73. Marques AT, Durão LM, Magalhães AG, Silva JF, Tavares JMRS (2009) Delamination analysis of carbon fibre reinforced laminates: evaluation of a special step drill. Compos Sci Technol 69(14):2376–2382

    Google Scholar 

  74. Durao L, MA, Marques A, Tavares JMRS (2007) Effect of drilling parameters on composite plates damage.In: High Speed Industrial Manufacturing Processes (HSIMP), Senlis (France), p 08

  75. Favro L, Han X, Ouyang Z, Sun G, Thomas R (2001) Sonic IR imaging of cracks and delaminations. Anal Sci 17:451

    Google Scholar 

  76. Kurt M, Kaynak Y, Bagci E (2008) Evaluation of drilled hole quality in Al 2024 alloy. Int J Adv Manuf Technol 37(11-12):1051–1060

    Google Scholar 

  77. Vorburger T, Raja J (1990) Surface finish metrology tutorial. National Inst. of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD 20899

  78. Krishnaraj V, Prabukarthi A, Ramanathan A, Elanghovan N, Senthil Kumar M, Zitoune R, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Compos Part B 43(4):1791–1799. https://doi.org/10.1016/j.compositesb.2012.01.007

    Article  Google Scholar 

  79. Sureshkumar M, Lakshmanan D, Murugarajan A (2014) Experimental investigation and mathematical modelling of drilling on GFRP composites. Mater Res Innov 18(S1):S1-94–S91-97

    Google Scholar 

  80. Zitoune R, Krishnaraj V, Collombet F (2010) Study of drilling of composite material and aluminium stack. Compos Struct 92(5):1246–1255

    Google Scholar 

  81. Van Gestel N (2011) Determining measurement uncertainties of feature measurements on CMMs, these of Doctorate, Katholieke Universiteit Leuven – Faculteit Ingenieurs wetens chappen Kasteel park Arenberg 1-bus 2200, B-3001 Heverlee

  82. Krishnaraj V, Zitoune R, Davim JP (2013) Drilling of Polymer-Matrix Composites. Springer, Berlin Heidelberg

    Google Scholar 

  83. Davim JP, Reis P (2003) Drilling carbon fiber reinforced plastics manufactured by autoclave—experimental and statistical study. Mater Des 24(5):315–324

    Google Scholar 

  84. Abrão AM, Faria PE, Rubio JC, Reis P, Davim JP (2007) Drilling of fiber reinforced plastics: A review. J Mater Process Technol 186(1-3):1–7

    Google Scholar 

  85. Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59(4):481–487

    Google Scholar 

  86. Abrao A, Rubio JC, Faria P, Davim J (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Mater Des 29(2):508–513

    Google Scholar 

  87. Shyha I, Aspinwall D, Soo SL, Bradley S (2009) Drill geometry and operating effects when cutting small diameter holes in CFRP. Int J Mach Tools Manuf 49(12-13):1008–1014

    Google Scholar 

  88. Palanikumar K (2011) Experimental investigation and optimisation in drilling of GFRP composites. Measurement 44(10):2138–2148

    Google Scholar 

  89. Rajakumar IPT, Hariharan P, Srikanth I (2013) A study on monitoring the drilling of polymeric nanocomposite laminates using acoustic emission. J Compos Mater 47(14):1773–1784

    Google Scholar 

  90. Tsao C (2008) Investigation into the effects of drilling parameters on delamination by various step-core drills. J Mater Process Technol 206(1-3):405–411

    Google Scholar 

  91. Quan Y, Zhong W (2009) Investigation on drilling-grinding of CFRP. Front Mech Eng China 4(1):60–63

    Google Scholar 

  92. Durão LMP, Gonçalves DJ, Tavares JMR, de Albuquerque VHC, Vieira AA, Marques AT (2010) Drilling tool geometry evaluation for reinforced composite laminates. Compos Struct 92(7):1545–1550

    Google Scholar 

  93. Grilo T, Paulo R, Silva C, Davim J (2013) Experimental delamination analyses of CFRPs using different drill geometries. Compos Part B 45(1):1344–1350

    Google Scholar 

  94. Rubio JC, Abrao A, Faria P, Correia AE, Davim JP (2008) Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48(6):715–720

    Google Scholar 

  95. Campos Rubio JC, Abrão AM, Eustaquio Faria P, Correia AE, Davim JP (2008) Delamination in high speed drilling of carbon fiber reinforced plastic (CFRP). J Compos Mater 42(15):1523–1532

    Google Scholar 

  96. Priarone PC, Robiglio M, Melentiev R, Settineri L (2017) Diamond Drilling of Carbon Fiber Reinforced Polymers: Influence of Tool Grit Size and Process Parameters on Workpiece Delamination. Procedia CIRP 66:181–186. https://doi.org/10.1016/j.procir.2017.03.296

    Article  Google Scholar 

  97. Davim JP, Reis P, António CC (2004) Drilling fiber reinforced plastics (FRPs) manufactured by hand lay-up: influence of matrix (Viapal VUP 9731 and ATLAC 382-05). J Mater Process Technol 155:1828–1833

    Google Scholar 

  98. Hocheng H, Tsao C (2006) Effects of special drill bits on drilling-induced delamination of composite materials. Int J Mach Tools Manuf 46(12-13):1403–1416

    Google Scholar 

  99. Feito N, Milani A, Muñoz-Sánchez A (2016) Drilling optimization of woven CFRP laminates under different tool wear conditions: a multi-objective design of experiments approach. Struct Multidiscip Optim 53(2):239–251

    Google Scholar 

  100. Youssef HA, El-Hofy HA (2008) Machining technology: machine tools and operations. CRC Press, Boca Raton

    Google Scholar 

  101. Xu J, Li C, Chen M, El Mansori M, Ren F (2019) An investigation of drilling high-strength CFRP composites using specialized drills. Int J Adv Manuf Technol 103(9–12):3425–3442. 1-18. https://doi.org/10.1007/s00170-019-03753-8

    Article  Google Scholar 

  102. Feito N, Díaz-Álvarez J, López-Puente J, Miguelez M (2018) Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs. Compos Struct 184:1147–1155

    Google Scholar 

  103. Xu J, An Q, Chen M (2014) A comparative evaluation of polycrystalline diamond drills in drilling high-strength T800S/250F CFRP. Compos Struct 117:71–82

    Google Scholar 

  104. Tsao C, Chiu Y (2011) Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills. Int J Mach Tools Manuf 51(9):740–744

    Google Scholar 

  105. Lazar M-B, Xirouchakis P (2011) Experimental analysis of drilling fiber reinforced composites. Int J Mach Tools Manuf 51(12):937–946

    Google Scholar 

  106. Babu J, Basavarajappa S, Blass D, Blümel S, Chatelain J-F, Cong W, Díaz-Álvarez J, Dilger K, Feito N, Fischer F (2015) Machinability of fibre-reinforced plastics, vol 4. Walter de Gruyter GmbH & Co KG,

  107. Geier N, Davim JP, Szalay T (2019) Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Compos A: Appl Sci Manuf 125:105552. https://doi.org/10.1016/j.compositesa.2019.105552

    Article  Google Scholar 

  108. Groover MP (2007) Fundamentals of modern manufacturing: materials processes, and systems. John Wiley & Sons, USA

    Google Scholar 

  109. El Bouami S, Habak M, Franz G, Velasco R, Vantomme P Effect of tool geometry and cutting parameters on delamination and thrust forces in drilling CFRP/Al-Li. In: AIP Conference Proceedings, 2016. vol 1. AIP Publishing, p 080012

  110. Rimpault X, Chatelain J-F, Klemberg-Sapieha JE, Balazinski M (2017) Burr height monitoring while drilling CFRP/titanium/aluminium stacks. Mech Indu 18(1):114

    Google Scholar 

  111. Zitoune R, Krishnaraj V, Collombet F, Le Roux S (2016) Experimental and numerical analysis on drilling of carbon fibre reinforced plastic and aluminium stacks. Compos Struct 146:148–158

    Google Scholar 

  112. Xu J, El Mansori M (2016) Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks. Compos Struct 157:461–482

    Google Scholar 

  113. Xu W, Zhang L (2018) Tool wear and its effect on the surface integrity in the machining of fibre-reinforced polymer composites. Compos Struct 188:257–265

    Google Scholar 

  114. Ferreira JR, Coppini NL, Miranda GWA (1999) Machining optimisation in carbon fibre reinforced composite materials. J Mater Process Technol 92-93:135–140. https://doi.org/10.1016/S0924-0136(99)00221-6

    Article  Google Scholar 

  115. Trent EEM (2000) Metal cutting [electronic resource]. Butterworth-Heinemann, UK

    Google Scholar 

  116. Ozkan D, Panjan P, Gok MS, Karaoglanli AC (2019) Investigation of machining parameters that affects surface roughness and cutting forces in milling of CFRPs with TiAlN and TiN coated carbide cutting tools. Mater Res Express 6(9):095616

    Google Scholar 

  117. Hanif MI, Aamir M, Ahmed N, Maqsood S, Muhammad R, Akhtar R, Hussain I (2019) Optimization of facing process by indigenously developed force dynamometer. Int J Adv Manuf Technol 100(5-8):1893–1905

    Google Scholar 

  118. Arun Ramnath R, Thyla P, Mahendra Kumar N, Aravind S (2018) Optimization of machining parameters of composites using multi-attribute decision-making techniques: A review. J Reinf Plast Compos 37(2):77–89

    Google Scholar 

  119. Turki Y, Habak M, Velasco R, Laurent JN, Vantomme P (2013) An experimental study of drilling parameters effect on composite carbon/epoxy damage. In: Key Engineering Materials. Trans Tech Publ, pp 2038-2046

  120. Enemuoh EU, El-Gizawy AS, Okafor AC (2001) An approach for development of damage-free drilling of carbon fiber reinforced thermosets. Int J Mach Tools Manuf 41(12):1795–1814

    Google Scholar 

  121. Sardinas RQ, Reis P, Davim JP (2006) Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms. Compos Sci Technol 66(15):3083–3088

    Google Scholar 

  122. Tsao C, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol 203(1-3):342–348

    Google Scholar 

  123. Shyha I, Soo SL, Aspinwall D, Bradley S (2010) Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. J Mater Process Technol 210(8):1023–1034

    Google Scholar 

  124. Krishnamoorthy A, Boopathy SR, Palanikumar K, Davim JP (2012) Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement 45(5):1286–1296

    Google Scholar 

  125. Abhishek K, Datta S, Mahapatra SS (2016) Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement 77:222–239

    Google Scholar 

  126. Rao S, Sethi A, Das AK, Mandal N, Kiran P, Ghosh R, Dixit A, Mandal A (2017) Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Mater Manuf Process 32(14):1612–1621

    Google Scholar 

  127. Vijayan D, Abhishek P, Kumar YM, Balaji P, Kumar Reddy PS (2018) Optimization of Drilling Parameters of Carbon Fiber Composites Using RSM based Desirability Function. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012076

  128. Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrão AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater Des 29(9):1768–1776. https://doi.org/10.1016/j.matdes.2008.03.014

    Article  Google Scholar 

  129. Thakur P, Teli S, Lad S (2019) Multiobjective Optimization in Drilling of Composites. In: Proceedings of International Conference on Intelligent Manufacturing and Automation. Springer, pp 279-286

  130. Shunmugesh K, Panneerselvam K (2018) Multi-performance Optimization of Drilling Carbon Fiber Reinforced Polymer Using Taguchi: Membership Function. Trans Indian Inst Metals 71(7):1615–1627. https://doi.org/10.1007/s12666-018-1296-x

    Article  Google Scholar 

  131. Shunmugesh K, Panneerselvam K (2017) Optimization of Machining Process Parameters in Drilling of CFRP Using Multi-Objective Taguchi Technique, TOPSIS and RSA Techniques. Polym Polym Compos 25(3):185–192

    Google Scholar 

  132. Arul S, Samuel Raj D, Vijayaraghavan L, Malhotra S, Krishnamurthy R (2006) Modeling and optimization of process parameters for defect toleranced drilling of GFRP composites. Mater Manuf Process 21(4):357–365

    Google Scholar 

  133. Ravi Sankar B, Umamaheswarrao P (2018) Multi objective optimization of CFRP Composite Drilling Using Ant Colony Algorithm. Mater Today: Proceedings 5(2, Part 1):4855–4860. https://doi.org/10.1016/j.matpr.2017.12.061

    Article  Google Scholar 

  134. Malik J, Mishra R, Singh I (2011) PSO-ANN approach for estimating drilling induced damage in CFRP laminates. Adv Prod Eng Manag 6(2):95–104

    Google Scholar 

  135. Shunmugesh K, Panneerselvam K (2016) Machinability study of Carbon Fiber Reinforced Polymer in the longitudinal and transverse direction and optimization of process parameters using PSO–GSA. Eng Sci Technol An Int J 19(3):1552–1563. https://doi.org/10.1016/j.jestch.2016.04.012

    Article  Google Scholar 

  136. Omkar SN, Senthilnath J, Khandelwal R, Narayana Naik G, Gopalakrishnan S (2011) Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl Soft Comput 11(1):489–499. https://doi.org/10.1016/j.asoc.2009.12.008

    Article  Google Scholar 

  137. Pignatiello JJ Jr, Ramberg JS (1991) Top ten triumphs and tragedies of Genichi Taguchi. Qual Eng 4(2):211–225

    Google Scholar 

  138. Iyer AK (2015) Characterization of Composite Dust generated during Milling of Uni-Directional and Random fiber composites. University of Washington, Washington

    Google Scholar 

  139. Kwan JK-C (1990) Health hazard evaluation of the postcuring phase of graphite composite operations at the Lawrence Livermore National Laboratory, Livermore, California. Lawrence Livermore National Lab, CA (USA)

    Google Scholar 

  140. Haddad M, Zitoune R, Eyma F, Castanie B (2014) Study of the surface defects and dust generated during trimming of CFRP: influence of tool geometry, machining parameters and cutting speed range. Compos A: Appl Sci Manuf 66:142–154

    Google Scholar 

  141. Haddad M, Zitoune R, Eyma F, Castanié B, Bougherara H (2012) Surface quality and dust analysis in high speed trimming of CFRP. In: Applied Mechanics and Materials. Trans Tech Publ, pp 57-62

  142. Ngoc Nguyen-Dinh RZ, Bouvet C, Leroux S (2018) Experimental study of dust emission during trimming of CFRP structures with PCD tool. Paper presented at the ECCM18 - 18th European Conference on Composite Materials, Athens

    Google Scholar 

  143. Ramulu M, Kramlich J (2004) Machining of fiber reinforced composites: review of environmental and health effects. Int J Environ Conscious Design Manuf 11 (4)

  144. Koenig FKW, Wuertz C, Dietz C (1999) Environmental effects and safety in machining fibrous composites. Mach Ceram Comp 53:411

    Google Scholar 

  145. Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos A: Appl Sci Manuf 31(10):1107–1115

    Google Scholar 

  146. Murphy C, Byrne G, Gilchrist M (2002) The performance of coated tungsten carbide drills when machining carbon fibre-reinforced epoxy composite materials. Proc Inst Mech Eng B J Eng Manuf 216(2):143–152

    Google Scholar 

  147. Feito N, Diaz-Alvarez A, Cantero JL, Rodríguez-Millán M, Miguelez H (2016) Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs. J Reinf Plast Compos 35(1):33–55

    Google Scholar 

Download references

Acknowledgments

The first author, Muhammad Aamir, would like to thank Edith Cowan University for the awarded higher degree research (ECU-HDR) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aamir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aamir, M., Tolouei-Rad, M., Giasin, K. et al. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review. Int J Adv Manuf Technol 105, 2289–2308 (2019). https://doi.org/10.1007/s00170-019-04348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04348-z

Keywords

Navigation