Skip to main content
Log in

A Generalised Asperity-Based Friction Model

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Despite considerable research effort, the use of physics-based modelling to predict frictional behaviour is still a debatable question in modern tribological research. This article presents a dry-friction model, based on physical phenomena such as adhesion, elastic–plastic contact and deformation. This contribution offers a means to simulate all kinds of frictional behaviour that is observed in experimental research. The contact of two bodies through their surfaces is transformed into the contact of a body that is provided with asperities and containing material and geometrical information of both of the mating surfaces, and a counter profile, holding solely geometrical information. The local adhesion between the asperity tips and the counter profile, together with the elastic–plastic behaviour of the asperities themselves, form the basis for this model. The simulation results show qualitatively good agreement with experimental study. Friction and contact phenomena such as normal creep, increasing static coefficient of friction with increasing dwell time, pre-sliding hysteresis with nonlocal memory, Stribeck and viscous effect, frictional lag, stick–slip and dynamical oscillations are revealed by this model. Furthermore, future improvement and refinement of the model is possible (and ongoing) so as to incorporate lubrication and asperity wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

δ j :

Spring deformation of the j-th element

δn :

Normal interference depth

Δ j :

Maximum spring deformation of the j-th Maxwell-Slip element

ζ:

Main damping ratio

ζTi :

Tangential damping ratio of the i-th asperity

ζNi :

Normal damping ratio of the i-th asperity

λ:

Mean counter profile wavelength

μ:

Coefficient of friction

μs :

Static coefficient of friction

σNi , σTi :

Yielding force

τ:

Non-dimensional time

ωN :

Main eigenfrequency of the system

ωnTi :

Tangential eigenfrequency of the i-th asperity

ωnNi :

Normal eigenfrequency of the i-th asperity

ωnPi :

Eigenfrequency of counter profile of the i-th asperity

A :

Amplitude of the applied excitation

cT,i cN,i :

Dimensional tangential and normal damping of the i-th asperity

C T :

Dimensional main tangential damping

C :

Damping matrix

dx T,i :

Horizontal asperity distribution

f t :

Frequency of the applied excitation

F fric :

Non-dimensional global friction force

F norm :

Non-dimensional global normal contact force

F n :

Local normal contact force

F adh,i :

Adhesion force of the i-th asperity

F :

Force vector

k el :

Elastic spring stiffness

k pl :

Plastic spring stiffness

k p,i :

Profile stiffness of the i-th asperity

kT,i kN,i :

Dimensional tangential and normal stiffness of the i-th asperity

K T :

Dimensional main tangential stiffness

K :

Stiffness matrix

l i :

Dimensional asperity length

L i :

Non-dimensional asperity length

m i :

Dimensional mass of the i-th asperity

M :

Dimensional main mass

M :

Mass matrix

N :

Number of asperities

q :

State vector

t :

Dimensional time

x, y:

Dimensional position

x i , y i :

Dimensional asperity mass position of the i-th asperity

xm, ym:

Dimensional position of the free end of the main spring

xt, yt:

Dimensional main mass position

X, Y:

Non-dimensional position

.:

Dimensional time derivation

′:

Non-dimensional time derivation

References

  1. da Vinci, L.: Codex Atlanticus

  2. Amontons, G.: On the resistance originating in machines. In: Proceedings of the French Royal Academy of Sciences, pp. 206–222 (1699)

  3. Euler, L.: Sur le frottement des corps solides. Memoires de l’academie des sciences de Berlin 4, 122–132 (1748)

    Google Scholar 

  4. Coulomb, C.A.: Theorie des machines simples, en ayant egard au frottement de leurs parties, et a la roideur des cordages. In: Memoire de Mathematique et de Physics de l’Academie Royal, pp. 161–342 (1785)

  5. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)

    Google Scholar 

  6. Popov, V.L., Psakhie, S.G.: Numerical simulation methods in tribology. Tribol. Int. 40, 916–823 (2007)

    Article  CAS  Google Scholar 

  7. Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  Google Scholar 

  8. Perry, S.S., Tysoe, W.T.: Frontiers of fundamental tribological research. Tribol. Lett. 19(3), 151–161 (2005)

    Article  Google Scholar 

  9. Persson, B.N.J.: Sliding friction. Surf. Sci. Rep. 33(3), 83–120 (1999)

    Article  CAS  ADS  Google Scholar 

  10. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, 1–62 (2005)

    Article  ADS  Google Scholar 

  11. Abbott, E.J., Firestone, F.A.: Specifying surface quality: a method based on accurate measurement and comparison. Mech. Eng. 55, 569–572 (1933)

    Google Scholar 

  12. Kragelsky, I.V.: Friction and Wear. Butterworths, Washington (1965)

    Google Scholar 

  13. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  ADS  Google Scholar 

  14. Whitehouse, D.J. , Archard, J.F.: The properties of random surfaces on significance in their contact. Proc. R. Soc. Lond. A 316, 97–121 (1970)

    Article  ADS  Google Scholar 

  15. Ogilvy, J.A.: Numerical simulation of friction between contacting rough surfaces. J. Phys. D Appl. Phys. 24(11), 2098–2109 (1991)

    Article  CAS  ADS  Google Scholar 

  16. Hertz, H.: Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92 156–171 (1882)

    Article  Google Scholar 

  17. Ford, I.J.: Roughness effect on friction for multi-asperity contact between surfaces. J. Phys. D Appl. Phys. 26, 2219–2225 (1993)

    Article  ADS  Google Scholar 

  18. Tabor, D.: The Properties of Diamond, Chap. 10, pp. 325–350. Academic, London (1979)

    Google Scholar 

  19. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic–plastic model for the contact of rough surfaces. Trans. ASME J. Tribol. 109, 257–263 (1987)

    Article  Google Scholar 

  20. Derjaguin, B.V., Muller, V.M., Toporov, Y.V.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Article  CAS  Google Scholar 

  21. Tworzydlo, W.W., Cecot, W., Oden, J.T., Yew, C.H.: Computational micro- and macroscopic models of contact and friction: formulation, approach and applications. Wear 220(2), 113–140 (1998)

    Article  CAS  Google Scholar 

  22. Karpenko, Y.A., Akay, A.: A numerical model of friction between rough surfaces. Tribol. Int. 34, 531–545 (2001)

    Article  Google Scholar 

  23. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact. ASME J. Tribol. 127(2), 343–354 (2005)

    Article  Google Scholar 

  24. Quicksall, J.J., Jackson, R.L., Green, I.: Elasto-plastic hemispherical contact models for various mechanical properties. IMechE J. Eng. Tribol. 218(4), 313–322 (2004)

    Article  Google Scholar 

  25. Lampaert, V.: Modelling and control of dry sliding friction in mechanical systems. PhD thesis, Katholieke Universiteit Leuven, Division of Production Engineering, Machine Design and Automation, Leuven, Belgium (2003)

  26. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16(1), 81–93 (2004)

    Article  Google Scholar 

  27. Geike, T., Popov, V.L.: Reduced description of mixed lubrication. Tribol. Int. 41, 542–548 (2008)

    Article  CAS  Google Scholar 

  28. Björklund, S.: A random model for micro-slip between nominally flat surfaces. Trans. ASME J. Tribol. 119(4), 726–732 (1997)

    Article  Google Scholar 

  29. Andrews, S., Sehitoglu, H.: A computer model for crack growth from rough surfaces. Int. J. Fatigue 22, 619–630 (2000)

    Article  CAS  Google Scholar 

  30. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 324, 301–313 (1971)

    Article  CAS  ADS  Google Scholar 

  31. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 1–13 (1976)

    Google Scholar 

  32. Muller, V.M., Yushenko, V.S., Derjaguin, B.V.: On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77, 91–101 (1980)

    Article  CAS  Google Scholar 

  33. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 150(1), 243–269 (1992)

    Article  CAS  Google Scholar 

  34. Vu-Quoc, L., Zhang, X., Lesburg, L.: Normal and tangential force-displacement relations for frictional elastic–plastic contact of spheres. Int. J. Solids Struct. 38, 6455–6489 (2001)

    Article  MATH  Google Scholar 

  35. Ludema, K.C., Tabor, D.: The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966)

    Article  CAS  Google Scholar 

  36. Czichos, H.: Tribology a Systems Approach to the Science and Technology of Friction, Lubrication and Wear, vol. 1. Elsevier, Amsterdam (1978)

    Book  Google Scholar 

  37. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33(4), 893–900 (1966)

    Google Scholar 

  38. Goldfarb, M., Celanovic, N.: A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. Trans. ASME J. Dyn. Syst. Meas. Control 119, 478–485 (1997)

    Article  MATH  Google Scholar 

  39. Rizos, D.D., Fassois, S.D.: Presliding friction identification based upon the Maxwell Slip model structure. Chaos 14(2), 431–445 (2004)

    Article  MATH  MathSciNet  ADS  PubMed  Google Scholar 

  40. Buckingham, E.: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. IV(4), 345–376 (1914)

    Article  Google Scholar 

  41. Bornemann, P.B., Galvanetto, U., Crisfield, M.A.: Some remarks on the numerical time integration of non-linear dynamical systems. J. Sound Vib. 252(5), 935–944 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  42. Brockley, C.A., Davis, H.R.: The time-dependence of static friction. Trans. ASME J. Lubr. Technol. 90, 35–41 (1968)

    Google Scholar 

  43. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1965)

    Google Scholar 

  44. Mulhearn, T.O., Tabor, D.: Creep and hardness of metals: a physical study. J. Inst. Met. 89(1), 7–12 (1960)

    CAS  Google Scholar 

  45. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part II. Clarendon Press, Oxford (1964)

    Google Scholar 

  46. Gitis, N.V., Volpe, L.: Nature of static friction time dependence. J. Phys. D Appl. Phys. 25(4), 605–612 (1992)

    Article  ADS  Google Scholar 

  47. Berthoud, P., Baumberger, T.: Role of asperity creep in time- and velocity-dependent friction of a polymer glass. Europhys. Lett. 41(6), 617–622 (1998)

    Article  CAS  ADS  Google Scholar 

  48. Baumberger, T.: Contact dynamics and friction at a solid–solid interface: material versus statistical aspects. Solid State Commun. 102(2–3), 175–185 (1997)

    Article  CAS  ADS  Google Scholar 

  49. Dowson, D.: History of Tribology. Longman, London (1979)

    Google Scholar 

  50. Baumberger, T.: Physics of Sliding Friction, Chap. 1. Dry Friction Dynamics at Low Velocities, pp. 1–16. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  51. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49(6), 4973 (1994)

    Article  ADS  Google Scholar 

  52. Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994)

    Article  ADS  Google Scholar 

  53. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterisation of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol. Lett. 16(1–2), 95–105 (2004)

    Article  Google Scholar 

  54. Mayergoyz, I.: Mathematical Models of Hysteresis. Springer-Verlag, New-York (1991)

    MATH  Google Scholar 

  55. Al-Bender, F., Symens, W.: Dynamic characterization of hysteresis elements in mechanical systems, Part 1. Theoretical analysis. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 1–11 (2005)

    Google Scholar 

  56. Masing, G. (1926) Eigenspannungen und Verfestigung beim Messing. In: Proceedings of the 2nd International Congress on Applied Mechanics. Zürich, Swiss, pp. 332–335

  57. Smith, K.N., Watson, P., Topper, T.H.: Stress–strain function for fatigue of metals. J. Mater. 5(4), 767–778 (1970)

    Google Scholar 

  58. Nouri, B.M.Y.: Friction identification in mechatronic systems. ISA Trans. 43, 205–216 (2004)

    Article  PubMed  Google Scholar 

  59. Kappagantu, R.V., Feeny, B.F.: Proper orthogonal modes of a beam with frictional excitation. In: Guran, A. (ed.) Proceedings of the First International Symposium on Impact and Friction of Solids, Structures and Intelligent Machines, vol. 14 of B, pp. 167–172 (1998)

  60. Yanada, H., Sekikawa, Y.: Modeling of dynamic behaviors of friction. Mechatronics, 18, 330–339 (2008)

    Article  Google Scholar 

  61. Al-Bender, F., De Moerlooze, K.: On the relationship between normal load and friction force in pre-sliding frictional contacts, Part 1: Theoretical analysis. Submitted to Wear (2009). doi:10.1016/j.wear.2010.02.010

  62. De Moerlooze, K., Al-Bender, F.: On the relationship between normal load and friction force in pre-sliding frictional contacts, Part 2: Experimental investigation. Submitted to Wear (2009). doi:10.1016/j.wear.2010.02.008

  63. Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. J. Tribol. 112, 147–152 (1990)

    Article  Google Scholar 

  64. Harnoy, A., Friedland, B., Rachoor, H.: Modeling and simulation of elastic and friction forces in lubricated bearings for precise motion control. Wear 172, 155–165 (1994)

    Article  ADS  Google Scholar 

  65. Al-Bender, F., De Moerlooze, K., Vanherck, P.: Lift-up butterflies in friction. Manuscript in preparation (2010)

  66. Tolstoi, D.M.: Significance of the normal degree of freedom and the natural normal vibrations in contact friction. Wear 10(3), 199–213 (1967)

    Article  Google Scholar 

  67. Al-Bender, F., Lampaert, V., Swevers, J.: Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. Chaos Interdiscip. J. Nonlinear Sci. 14(2), 446–460 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fund for Scientific Research—Flanders (F.W.O.) under Grant FWO4283. This research is conducted utilising high performance computational resources provided by the University of Leuven, http://ludit.kuleuven.be/hpc. The scientific responsibility is assumed by its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris De Moerlooze.

Appendix

Appendix

See Table 1.

Table 1 Overview of the used model parameters

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Moerlooze, K., Al-Bender, F. & Van Brussel, H. A Generalised Asperity-Based Friction Model. Tribol Lett 40, 113–130 (2010). https://doi.org/10.1007/s11249-010-9645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9645-x

Keywords

Navigation