Skip to main content
Log in

Triboplasma Generation and Triboluminescence: Influence of Stationary Sliding Partner

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, the characteristics of triboplasma have been investigated from the point of view of how the kinds of the stationary partner influence the photon energy and the plasma distribution. The energy spectrum and two-dimensional images of the emitted photons were measured during the sliding of a diamond pin with a tip radius of 1.5 and 3 mm on the three kinds of disk made of Al2O3, MgO, and SiO2 in dry sliding in air. The results showed that all the three kinds of solid tested had narrow bands of air-discharge plasma in the ultraviolet region, demonstrating that the triboplasma generation does not depend on the kinds of insulating solids. Triboplasma was distributed having a ring with one or two tails in all the three kinds of solid Al2O3, MgO, and SiO2. The mechanisms of UV, visible, and IR photon emissions are discussed. The UV photons are emitted from the ionized plasma gas produced by discharging of air, while the visible photons are emitted from the defect and impurity centers excited by the triboplasma-photons, triboplasma-electrons, and frictional temperature rise together with the photons from the plasma itself. A 696-nm narrow band appeared only with Al2O3, and it was attributed to the Cr3+ ions excited by the UV photons and electrons from the triboplasma. The IR photons should be emitted from the sliding contact by the thermal emissions consisting of thermoluminescence and blackbody radiation, as well as from the triboplasma. The visible photon emission was strongest at the pair points facing across the frictional track in Al2O3 and MgO. To explain the photon emission at the pair points, a new model has been proposed, in which the visible photons are emitted from the surface defect and/or impurity centers excited by the back electrons accelerated with the inverse electric field caused by the negatively charged patches produced by the electron bombardment to the diamond surface. The negative charges on the frictional track repelled the back electrons, so that the back-electrons attack just outside the frictional track.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Archard, J.F.: The temperature of rubbing surface. Wear 2, 438–455 (1958/1959)

    Google Scholar 

  2. Iluc, I.: Tribology of Thin Layers. Elsevir, New York (1980)

    Google Scholar 

  3. Sakurai, T., Sato, K.: Study of corrosivity and correlation between chemical reactivity and load carrying capacity of oils containing extreme pressure agents. 9, 77–87 (1966)

  4. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon, Oxford (1950)

    Google Scholar 

  5. Heinecke, G.: Tribochemistry. Verlag, Berlin (1984)

    Google Scholar 

  6. Mori, S., Takahashi, K., Wayama, K., Asabe, Y.: Chemisorption of ethers on nascent nickel surfaces formed under vacuum conditions at room temperature. Proc. Int. Trib. Conf. Nagoya, 1171–1176 (1990)

  7. Kajdas, C.: On a negative-ion concept of EP action of organic-sulfur compounds. ASLE Trans. 28, 21–30 (1984)

    Google Scholar 

  8. Karis, T.E., Novotny, V.J., Johnson, R.D.: Mechanical scission of perfluoropolyethers. J. Appl. Polym. Sci. 50, 1357–1368 (1993)

    Article  CAS  Google Scholar 

  9. Nakayama, K., Leiva, J.A., Enomoto, Y.: Chemi-emission of electrons from metal surfaces in the cutting process due to metal/gas interactions. Tribol. Int. 28, 507–515 (1995)

    Article  CAS  Google Scholar 

  10. Koyama, M., Hayakawa, J., Onodera, T., Ito, K., Tsubori, H., Endou, A., Kubo, M., Carpio, C.A.D., Miyamoto, A.: Tribochemical reaction dynamics of phosphoric ester lubricant additive by using a hybrid tight-binding quantum chemical molecular dynamics method. J. Phys. Chem. B 110, 17507–17511 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Nakayama, K., Fujimoto, T.: The energy of electrons emitted from wearing solid surfaces. Tribol. Int. 17, 75–81 (2004)

    CAS  Google Scholar 

  12. Nakayama, K., Suzuki, N., Hashimoto, H.: Triboemission of charged particles and photons from wearing solid surfaces during frictional damage. J. Phys. D Appl. Phys. 25, 303–308 (1992)

    Article  CAS  ADS  Google Scholar 

  13. Nakayama, K., Nevshupa, R.A.: Characteristics and pattern of plasma generated at sliding contact. Trans. ASME 125, 780–787 (2003)

    CAS  Google Scholar 

  14. Nakayama, K.: Triboemission of charged particles and resistivity of solids. Tribol. Int. 6, 37–40 (1999)

    CAS  Google Scholar 

  15. Lide, D.A. (ed.): Handbook of Chemistry and Physics. CRC (1998–1999)

  16. Nakayama, K.: Tribophysical phenomena and tribochemical reaction. Jpn. J. Tribol. 42(9), 1077–1084 (1997)

    Google Scholar 

  17. Nakayama, K., Nevshupa, R.A.: Plasma generation in a gap around a sliding contact. J. Phys. D Appl. Phys. 35, L53–L56 (2002)

    Article  CAS  ADS  Google Scholar 

  18. Nakayama, K.: The plasma generated and photons emitted in an oil-lubricated sliding contact. J. Phys. D Appl. Phys. 40, 1103–1107 (2007)

    Article  CAS  ADS  Google Scholar 

  19. Nakayama, K., Hashimoto, H.: Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures. Tribol. Int. 29, 385–393 (1996)

    Article  CAS  Google Scholar 

  20. Nakayama, K., Mirza, S.M.: Verification of the decomposition of perfluoropolyether fluid due to tribomicroplasma. Tribol. Trans. 49, 17–25 (2006)

    Article  CAS  Google Scholar 

  21. Nakayama, K.: Triboemission and triboplasma generation with DLC films. In: Donnet, C., Erdemir, A. (eds.) Tribology of Diamond-Like Carbon Films. Springer (2008)

  22. Nakayama, K., Nevshupa, R.A.: Effect of dry air pressure on characteristics and pattern of triboplasma. Vacuum 74, 11–17 (2004)

    Article  CAS  Google Scholar 

  23. Nakayama, K., Hashimoto, H.: Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces. Tribol. Trans. 38, 35–42 (1995)

    Article  CAS  Google Scholar 

  24. Nakayama, K.: Contact geometry and distribution of plasma generated in the vicinity of sliding contact. Jpn. J. Appl. Phys. 6007–6014 (2007)

  25. Haper, W.R.: Contact and Frictional Electrification. Clarendon (1967)

  26. Latham, J.: Electrification produced by the asymmetric rubbing of ice on ice. J. Appl. Phys. 14, 488–490 (1963)

    Google Scholar 

  27. Oguchi, T., Tamatani, M.: Contact electrification in inorganic binary compounds. J. Electrochem. Soc. 133, 841–847 (1986)

    Article  CAS  Google Scholar 

  28. Kornfeld, M.I.: Frictional electrification. J. Phys. D Appl. Phys. 9, 1183–1192 (1976)

    Article  CAS  ADS  Google Scholar 

  29. Nakayama, K., Hashimoto, H.: Triboemission of charged particles and photons from wearing ceramic surfaces in various gases. Tribol. Trans. 35, 643–650 (1992)

    Article  CAS  Google Scholar 

  30. von Engel, A.: Ionized Gases. AIP, New York (1992)

    Google Scholar 

  31. Nakayama, K.: Tribocharging and friction in insulators in ambient air. Wear 194, 185–189 (1996)

    Article  CAS  Google Scholar 

  32. Kristianpoller, N., Rehavy, A.: Luminescence center in Al2O3. J. Lumin. 18/19, 239–243 (1979)

    Article  Google Scholar 

  33. Toyoda, T., Obikawa, T., Shigenari, T.: Photoluminecence spectroscopy of Cr3+ in ceramic Al2O3. Mater. Sci. Eng. B54, 33–37 (1998)

    Article  CAS  Google Scholar 

  34. Pan, Chennan., Chen, S., Shen, P.: Photoluminescence and transformation of dense Al2O3: Cr3+ condensates synthesized by laser-ablation route. J. Cryst. Growth 310, 699–705 (2008)

    Article  CAS  ADS  Google Scholar 

  35. Patra, A., Tallman, R.E., Weinstein, B.A.: Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals. Opt. Mater. 27, 1396–1401 (2005)

    Article  CAS  ADS  Google Scholar 

  36. Nagabhushana, H., Umesh, B., Nagabhushana, B.N., Lakshminarasappa, B.N., Singh F., Chakradhar, R.P.S. Photoluminescence studies of 100 MeV 8+ ion irradiated Al2O3 single crystals. Spectrochim. Acta A: Mol. Biomol. Spectrosc. (2008) accepted

  37. Milman, I.I., Moiseykin, E.V., Nikiforov, S.V., Mikhailov, S.G., Solomonov, V.I.: Luminescence properties of α-Al2O3 dosimetric crystals exposed to a high-current electron beam. Radiat. Meas. 38, 443–446 (2004)

    Article  CAS  Google Scholar 

  38. Mkhov, V.N., Lusichik, A., Lushichik, Ch.B., Kirm, M., Vasilchenko, E., Vierhauer, S., Harutunvan, V.V., Aleksanvan, E.: Luminescence and radiation defects in electron-iradiation defects in electron defects in electron-irradiated Al2O3 and Al2O3: Cr. Nucl. Instrum. Meth. Phys. B266, 2949–2952 (2008)

    Article  ADS  CAS  Google Scholar 

  39. Kasemo, B., Toernqvist, E., Wallden, L.: Metal-gas reactions studied by surface chemiluminescence. Mater. Sci. Eng. 42, 23–29 (1980)

    Article  CAS  Google Scholar 

  40. Walters, G.K., Estle, T.L.: Paramagnetic resonance of defects introduced near the surface of solids by mechanical damage. J. Appl. Phys. 32, 1854–1859 (1961)

    Article  CAS  ADS  Google Scholar 

  41. Wertz, J. E., Auzins, P., Weeks, R. A.: Electron spin resonance of f centers in magnesium oxide; confirmation of the spin of magnesium-25. Phys. Rev. 107, 1535–1537 (1957)

    Article  CAS  ADS  Google Scholar 

  42. Chen, Y., Kolopus, J.L., Sibley, W.A.: Luminescence of the F+ center in MgO. Phys. Rev. 186, 865–870 (1969)

    Article  CAS  ADS  Google Scholar 

  43. Kapper, L.A., Kroes, R.L., Henseley, E.B.: F+ and F, centers in magnesium oxide. Phys. Rev. 1, 4151–4157 (1970)

    Article  ADS  Google Scholar 

  44. Chen, Y., Kolopus, J.L., Sibley, W.A.: Defect luminescence in irradiated MgO. J. Lumin. 1, 633–640 (1970)

    Article  Google Scholar 

  45. Williams Jr., G.P., Rosenblatt, G.H., Ferry, M.J., Willias, R.T., Chen, Y.: Time resolved luminescence and absorption spectroscopy of defects in MgO and Al2O3. J. Lumin. 40&41, 339–340 (1988)

    Article  Google Scholar 

  46. Rosenblatt, G.H., Rowe, M.W., Williams Jr., G.P., Williams, R.T.: Luminescence of F and F+ centers in magnesium oxides. Phys. Rev. 39, 10309–10318 (1989)

    CAS  Google Scholar 

  47. Dickinson, J.T., Jensen, L.C., Webb, R.L., Langford, S.C.: Photoluminescence imaging of mechanically produced defects. J. Non-Cryst. Solids 177, 1–8 (1994)

    Article  CAS  ADS  Google Scholar 

  48. Duley, W.W., Rosatzin, M.: The orange luminescence band in MgO crystals. J. Phys. Chem. Solids 46, 165–170 (1985)

    Article  CAS  ADS  Google Scholar 

  49. Llopis, J., Piqueras, J., Bru, L.: Cathodoluminescence from slip planes in deformed MgO. J. Mater. Sci. 13, 1361–1364 (1978)

    Article  CAS  ADS  Google Scholar 

  50. Datta, S., Boswarva, I.M., Holt, D.B.: Cathodeluminescence in deformed MgO crystals. J. Phys. Chem. Solids 40, 567–571 (1979)

    Article  CAS  ADS  Google Scholar 

  51. Chakrabarti, K., Mathur, V.K.: Optically and thermally stimulated luminescence in MgO. Solid State Commun. 77, 481–483 (1991)

    Article  CAS  ADS  Google Scholar 

  52. Kawaguchi, Y.: Luminescence spectra at bending fracture of single crystal MgO. Solid State Commun. 117, 17–20 (2001)

    Article  ADS  Google Scholar 

  53. Kawaguchi, Y.: Time-resolved fractoluminescence spectra of silica in a vacuum and nitrogen atmosphere. Phys. Rev. B 52, 9224–9228 (1995)

    Article  CAS  ADS  Google Scholar 

  54. Jones, C.E., Embree D.: Correlation of the 4.77–4.28-eV luminescence band in silicon dioxide with the oxygen vacancy. J. Appl. Phys. 47, 5365–5371 (1976)

    Article  CAS  ADS  Google Scholar 

  55. Skuja, L.N., Streletsky, A.N., Pakovich, A.B.: A new intrinsic defect in amorphous SiO2: twofold coordinated silicon. Solid State Commun. 50, 1069–1072 (1984)

    Article  CAS  ADS  Google Scholar 

  56. Silin, A.R., Skuja, L.N., Trukhin, A.N.: Intrinsic defects generation mechanism in fused silica. J. Non-Cryst. Solids 38 &39, 195–200 (1980)

    Article  Google Scholar 

  57. Okuzaki, S., Okude, K., Ohishi, T.: Photoluminescence behavior of SiO2 prepared by sol–gel processing. J. Non-Cryst. Solids 265, 61–67 (2000)

    Article  CAS  ADS  Google Scholar 

  58. Mitchell, Jdenure, D.G.: A study of SiO layer on Si using cathodoluminescence spectra. Solid State Electron. 16, 825–839 (1973)

    Article  CAS  ADS  Google Scholar 

  59. Sigel Jr., G.H.: Ultraviolet spectra of silicate glasses: a review of some experimental evidence. J. Non-Cryst. Solids. 13, 372–398 (1973)

    ADS  Google Scholar 

  60. Sigel, G.H., Jr., Friebele, E.J., Ginther, R.J., Griscon, D.L.: Effect of stoichiometry on the radiation response of SiO2. IEEE Trans. Nucl. Sci. NS-21, 56–61 (1974)

    Google Scholar 

  61. Wang, P.W., Haglund, R.F., Kinser, D.L., Mendenhall, M.H., Tolk, N.H., Weeks, R.A.: Luminescence induced by low energy electron desorption in suprasil and spectrosil glasses. J. Non-Cyst. Solids 102, 288–294 (1988)

    Article  CAS  ADS  Google Scholar 

  62. Itoh, C., Tanimura, K., Itoh, N.: Optical studies of self-trapped excitons in SiO2. J. Phys. Solid State Phys. 21, 4693–4702 (1988)

    Article  ADS  Google Scholar 

  63. Guzzi, M., Lucchini, G., Martini, M., Pio, F., Vedda, A., Grilli, E.: Thermally stimulated luminescence above room temperature of amorphous SiO2. Solid State Commun. 75, 75–79 (1990)

    Article  CAS  ADS  Google Scholar 

  64. Chapman, G.N., Walton, A.J.: Triboluminescence of glasses and quartz. J. Appl. Phys. 54, 5961–5965 (1983)

    Article  CAS  ADS  Google Scholar 

  65. Zinc, J.Y., Beese, W., Schneider, J.W.: Triboluminescence of silica core optical fibers. Appl. Phys. Lett. 40, 110–112 (1982)

    Article  ADS  Google Scholar 

  66. Kawaguchi, Y.: Fractoluminescence spectra in crystalline quartz. J. Appl. Phys. 37, 1892–1896 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by KAKENHI (Grant-in-Aid for Scientific (A)20246035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Nakayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, K. Triboplasma Generation and Triboluminescence: Influence of Stationary Sliding Partner. Tribol Lett 37, 215–228 (2010). https://doi.org/10.1007/s11249-009-9516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9516-5

Keywords

Navigation