Skip to main content
Log in

Triboplasma Generation and Triboluminescence in the Inside and the Front Outside of the Sliding Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Previously, high-intensity triboplasma was discovered in the rear outside gap of the sliding contact by measuring the triboluminescence. However, we have almost no information on the triboplasma generation inside of the sliding contact. This is because the intensity of the photon emission from the inside of the sliding contact is too weak to be detected compared to that from the high-intensity rear outside plasma. On the other hand, plasma generated at the front outside of the contact was also difficult to observe since the intensity was also so weak. In the present article, the author investigated the triboplasma generation at the inside, front outside and very vicinity of the sliding contact together with the rear outside of the sliding contact by measuring the two-dimensional images and intensities of the UV, visible and IR photons emitted from the sliding contact while sliding a diamond pin with a 4-mm tip radius on a sapphire disk in dry sliding in dry air under a normal force of 2 N and a sliding velocity of 34 cm/s. The results showed that extremely weak triboplasma is generated even in the small asperity gap of the sliding contact, that the sliding contact is surrounded by weak circular plasma and that weak plasma is generated further in the front of the sliding contact. Namely, four kinds of triboplasma were observed inside and outside of the sliding contact including the previously reported rear outside high-intensity plasma, (1) weak front outside plasma, (2) weaker circular outside plasma surrounding the contact, (3) weakest inside plasma and (4) high-intensity plasma, visible at the rear outside of the contact. Based on the experimental results, a new model of triboelectromagnetic phenomena has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haper, W.R.: Contact and Frictional Electrification. Oxford University Press, London (1967)

    Google Scholar 

  2. Nakayama, K.: The plasma generated and photons emitted in an oil-lubricated sliding contact. J. Phys. D Appl. Phys. 40, 1103–1107 (2007)

    Article  Google Scholar 

  3. Nakayama, K.: Triboplasma generation and triboluminescence: influence of stationary sliding partner. Tribol. Lett. 37, 215–218 (2010)

    Article  Google Scholar 

  4. Nakayama, K., Hashimoto, H.: Triboemision, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures. Tribol. Int. 29, 385–393 (1996)

    Article  Google Scholar 

  5. Nakayama, K., Mirza, S.M.: Verification of the decomposition of perfluoropolyether fluid due to tribomicroplasma. Tribol. Trans. 49, 17–25 (2006)

    Article  Google Scholar 

  6. Kato, K., Umehara, N., Adachi, K.: Friction, wear and N2-lubrication of carbon nitride coatings: a review. Wear 254, 1062–1069 (2003)

    Article  Google Scholar 

  7. Kano, M., et al.: Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Trobol. Lett. 18, 245–251 (2005)

    Article  Google Scholar 

  8. Erdemir, A., Fontaine, J., Donnet, C.: An overview of superlubricity in diamond-like carbon films. In: Donnet, D., Erdemir, A. (eds.) Tribology of Diamond Carbon Film, pp. 237–262. Springer, New York (2008)

    Chapter  Google Scholar 

  9. Ohta, T., et al.: Coolants effects on tool wear in machining single-crystal silicon with diamond tools. Key Eng. Mater. 389–390, 144–150 (2009)

    Article  Google Scholar 

  10. Nakayama, K.: UV, visible and IR photon emission distribution from the inside and outside of the PFPE lubricated sliding contact point and the mechanisms of the photon emission and plasma generation in oil. In: Proceedings of the Tribology Conference on Tokyo, 2007-5, pp. 339–340 (in Japanese)

  11. Matta, C., Erlyilmaz, O.L., De Barros Bouchet, M.I., Erdemir, A., Martion, J.M., Nakayama, K.: On the possible role of triboplasma in friction and wear of diamond-like carbon films in hydrogen-containing environments. J. Phys. D: Appl. Phys. 42, 075307 (2009)

    Article  Google Scholar 

  12. von Engel, A.: Ionized gases, p. 195. AIP Press, New York (1994)

    Google Scholar 

  13. Nakayama, K., Tanaka, M.: Silulation analysis of triboplasma generation using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. J. Phys. D: Appl. Phys. 45, 495203 (2012)

    Article  Google Scholar 

  14. Miyahara, Y., Tokoroyama, T., Umehara, N., Fuwa, Y.: In-situ observation for tribomicroplasma and transfer layer forming of carbon nitride coating. J. Jpn. Soc. Tribol. 56, 378–384 (2011). (in Japanese)

    Google Scholar 

  15. Nakayama, K.: Contact geometry and distribution of plasma generated in the vicinity of sliding contact. Jpn. J. Appl. Phys. 46, 6007–6601 (2007)

    Article  Google Scholar 

  16. Kristianpoller, N., Rehavy, A.: Luminescence center in Al2O3. J. Lumin. 18(19), 239–243 (1979)

    Article  Google Scholar 

  17. Toyoda, T., Obikawa, T., Shigenari, T.: Photoluminescence spectroscopy of Cr3+ in ceramics Al2O3. Mater. Sci. Eng. B54, 33–37 (1998)

    Article  Google Scholar 

  18. Pan, C., Chen, S., Shen, P.: Photoluminescence and transformation of dense Al2O3: Cr3+ condensates synthesized by laser-ablation route. J. Cryst. Growth 310, 699–705 (2008)

    Article  Google Scholar 

  19. Patra, A., Tallman, R.E., Weinstein, B.A.: Effect of crystal structure and dopant concentration on the luminescence of Cr3+ in Al2O3 nanocrystals. Opt. Mater. 27, 1396–1401 (2005)

    Article  Google Scholar 

  20. Chen, Y., Kolopus, J.L., Sibley, W.A.: Luminescence of the F+ center in MgO. Phys. Rev. 186, 865–870 (1969)

    Article  Google Scholar 

  21. Kapper, L.A., Kroes, R.L., Henseley, E.B.: F+ and F, centers in magnesium oxide. Phys. Rev. 1, 4151–4157 (1970)

    Article  Google Scholar 

  22. Chen, Y., Kolopus, J.L., Sibley, W.A.: Defect luminescence in irradiated MgO. J. Lumin. 1, 633–640 (1970)

    Article  Google Scholar 

  23. Williams Jr., G.P., Rosenblatt, G.H., Ferry, M.J., Williams, R.T., Chen, Y.: Time resolved luminescence and absorption spectroscopy of defects in MgO and Al2O3. J. Lumin. 40 & 41, 339–340 (1988)

    Article  Google Scholar 

  24. Rosenblatt, G.H., Rowe, M.W., Williams Jr., G.P., Williams, R.T.: Luminescence of F and F+ centers in magnesium oxides. Phys. Rev. 39, 10309–10318 (1989)

    Article  Google Scholar 

  25. Dickinson, J.T., Jensen, L.C., Webb, R.L., Langford, S.C.: Photoluminescence imaging of mechanically produced defects. J. Non-Cryst. Solids 177, 1–8 (1994)

    Article  Google Scholar 

  26. Duley, W.W., Rosatzin, M.: The orange luminescence band in MgO crystals. J. Phys. Chem. Solids 46, 165–170 (1985)

    Article  Google Scholar 

  27. Skuja, L.N., Streletsky, A.N., Pakovich, A.B.: A new intrinsic defect in amorphous SiO2: twofold coordinated silicon. Solid State Commun. 50, 1069–1072 (1984)

    Article  Google Scholar 

  28. Silin, A.R., Skuja, L.N., Trukhin, A.N.: Intrinsic defects generation mechanism in fused silica. J. Non-Cryst. Solids 38 & 39, 195–200 (1980)

    Article  Google Scholar 

  29. Okuzaki, S., Okude, K., Ohishi, T.: Photoluminescence behavior of SiO2 prepared by sol–gel processing. J. Non-Cryst. Solids 265, 61–67 (2000)

    Article  Google Scholar 

  30. Milman, I.I., Moiseykin, E.V., Nikiforov, S.V., Mikhailov, S.G., Solomonov, V.I.: Luminescence properties of α-Al2O3 dosimetric crystals exposed to a high-current electron beam. Radiat. Meas. 38, 443–446 (2004)

    Article  Google Scholar 

  31. Mkov, V.N., Lusichik, A., Lushichik, Ch.B., Kirm, M., Vasilchenko, E., Vieerhauer, S., Harutunvan, V.V., Aleksanvan, E.: Luminescence and radiation defects in electron-irradiated Al2O3 and Al2O3: Cr. Nucl. Instrum. Methods Phys. B266, 2949–2952 (2008)

    Google Scholar 

  32. Llopis, J., Piqueras, J., Bru, L.: Cathodoluminescence from slip planes in deformed MgO. J. Mater. Sci. 13, 1361–1364 (1978)

    Article  Google Scholar 

  33. Datta, S., Boswarva, I.M., Holt, D.B.: Cathodeluminescence in deformed MgO crystals. J. Phys. Chem. Solids 40, 567–571 (1979)

    Article  Google Scholar 

  34. Jones, C.E., Embree, D.: Correlation of the 4.77–4.28-eV luminescence band in silicon dioxide with the oxygen vacancy. J. Appl. Phys. 47, 5365–5371 (2008)

    Article  Google Scholar 

  35. Mitchell, J., Denure, D.G.: A study of SiO layer on Si using cathodoluminescence spectra. Solid State Electron. 16, 825–839 (1973)

    Article  Google Scholar 

  36. Sigel Jr., G.H.: Ultraviolet spetra of silicate glasses: a rview of some experimental evidence. J. Non-cryst. Solids 13, 372–398 (1973)

    Article  Google Scholar 

  37. Sigel Jr., G.H., Friebele, E.J., Ginther, R.J., Griscon, D.L.: Effect of stoichiometry on the radiation response of SiO2. IEEE Trans. Nucl. Sci. NS-21, 56–61 (1974)

    Article  Google Scholar 

  38. Wang, P.W., Haglund Jr., R.F., Kinser, D.L., Mendenhall, M.H., Tolk, N.H., Weeks, R.A.: Luminescence induced by low energy electron desorption in suprasil and spectrosil glasses. J. Non-Cyst. Solids 102, 288–294 (1988)

    Article  Google Scholar 

  39. Itoh, C., Tanimura, K., Itoh, N.: Optical studies of self-trapped excitons in SiO2. J. Phys. C.: Solid State Phys. 21, 4693–4702 (1988)

    Article  Google Scholar 

  40. Guzzi, M., Lucchini, G., Martini, M., Pio, F., Vedda, A., Grilli, E.: Thermally stimulated luminescence above room temperature of amorphous SiO2. Solid State Commun. 75, 75–79 (1990)

    Article  Google Scholar 

  41. Chakrabarti, K., Mathur, V.K.: Optically and thermally stimulated luminescence in MgO. Solid State Commun. 77, 481–483 (1991)

    Article  Google Scholar 

  42. Kawaguchi, Y.: Luminescence spectra at bending fracture of single crystal MgO. Solid State Commun. 117, 17–20 (2001)

    Article  Google Scholar 

  43. Kawaguchi, Y.: Time-resolved fractoluminescence spectra of silica in a vacuum and nitrogen atmosphere. Phys. Rev. 52, 9224–9228 (1995)

    Article  Google Scholar 

  44. Zinc, J.Y., Beese, W., Schneider, J.W.: Triboluminescence of silica core optical fibers. Appl. Phys. Lett. 40, 110–112 (1982)

    Article  Google Scholar 

  45. Kawaguchi, Y.: Fractoluminescence spectra in crystalline quartz. J. Appl. Phys. 37, 1892–1896 (1998)

    Article  Google Scholar 

  46. Chapman, G.N., Walton, A.J.: Triboluminescence of glasses and quartz. J. Appl. Phys. 54, 5961–5965 (1983)

    Article  Google Scholar 

  47. Walters, G.K., Estle, T.L.: Paramagnetic resonance of defects introduced near the surface of solids by mechanical damage. J. Appl. Phys. 32, 1854–1859 (1961)

    Article  Google Scholar 

  48. Kasemo, B., Toernqvist, E., Wallden, L.: Metal–gas interactions studied by surface chemiluminescnce. Mater. Sci. Eng. 42, 23–29 (1980)

    Article  Google Scholar 

  49. Sweeting, L.M.: Triboluminescence with and without air. Chem. Mater. 13, 854–870 (2001)

    Article  Google Scholar 

  50. Nakayama, K., Tanaka, M.: Simulation analysis of triboplasma generation using the particle-in-cell Monte Carlo collision (PIC/MCC) method. J. Phys. D: Appl. Phys. 45, 495203 (2012)

    Article  Google Scholar 

  51. Nakayama, K., Leiva, J.A., Enomoto, Y.: Chemi-emission of electrons from metal surfaces in the cutting process due to metal/gas interactions. Tribol. Int. 28, 507–515 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express his thanks for the financial support from the Grant-in-aid for Scientific Research (A)20246035, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Nakayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, K. Triboplasma Generation and Triboluminescence in the Inside and the Front Outside of the Sliding Contact. Tribol Lett 63, 12 (2016). https://doi.org/10.1007/s11249-016-0700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0700-0

Keywords

Navigation