Skip to main content
Log in

Features of Niobium Damage by Pulsed Laser Radiation in Comparison with Beam-Plasma Impact

  • MATERIALS FOR ENERGETICS AND RADIATION-HARDENED MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The features of damageability of niobium by pulsed fluxes of laser radiation (LR) in free-running (power density qFR = 105–106 W/cm2 with pulse duration τFR = 700 μs) and Q-switched (q = 108–109 W/cm2, τQS = 80 ns) modes in comparison with pulsed effects of helium ion (HI) and helium plasma (HP) fluxes in the Plasma Focus (PF) setup at a flux power density qi ~ 108 W/cm2 and qp ~ 107 W/cm2, respectively, and pulse durations τi ≈ 30–50 ns and τp ≈ 100 ns were studied. LR fluxes were exposed to Nb in air; the working gas in the PF chamber was helium. It is shown that, in contrast to the effect of helium ion and helium plasma fluxes on niobium in the PF installation, which contribute to the erosion of the material, irradiation of niobium with pulsed LR in air fluxes under the implemented conditions does not cause noticeable surface erosion. When Nb is exposed to pulsed LR in the FR mode, the melt interacts with air and forms a thin film of elements of liquid and gas phases on the irradiated surface. A similar nature of Nb damageability under conditions of laser and beam-plasma treatment was found: a wavy relief of the irradiated surface with the presence of droplike fragments on it, extended wave crests, and microcracks. Irradiation of Nb with pulsed LR fluxes in the FR mode leads to formation of sections with block and cellular structures in the surface layer (SL), which are also formed after experiments in the PF chamber. It was found that, after laser treatment in the FR and Q-switched modes, bubbles (blisters) are not formed in the SL of niobium, which are always present on the irradiated surface when exposed to pulsed fluxes of HI and HP in the PF chamber owing to implantation of helium ions into Nb. It is noted that, in laser experiments, there is no possibility of implanting working gas ions into the material, which is typical of beam-plasma impacts in PF devices, which affects damageability parameters and modification of the structure of the irradiated SL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E.Z. Meylikhov (CRC Press, Boca Raton, 1996).

    Google Scholar 

  2. Bordini, B., Bessette, D., Bottura, L., et al., Magnetization and inter-filament contact in HEP and ITER bronze-route NbSn wires, IEEE Trans. on Appl. Supercond., 2011, vol. 21, no. 3, pp. 3373–3376.

    Article  CAS  Google Scholar 

  3. Pantsyrny, V., Shikov, A., and Vorobieva, A., Nb3Sn material development in Russia, Cryogenics, 2008, vol. 48, pp. 354–370.

    Article  CAS  Google Scholar 

  4. Shikov, A.K., Large projects of NTSD devices. Formation of ITER in Russia, Sverkhprovod. Elektroenerg., 2012, vol. 9, no. 3, pp. 1–9.

    Google Scholar 

  5. Astrov, M.S., Zapretilina, E.R., Koval’chuk, O.A., Rodin, I.Yu., and Fedotova, S.B., Superconducting technologies for creating a module of a magnetic levitation transport system, Sovr. Tekhnol. Transp., 2014, no. 3, p. 40.

  6. Deryagina, I.L., Popova, E.N., and Romanov, E.P., Development and fabrication of commercial superconductors based on Nb3Sn and NbTi, Vestn. Omsk. Univ., 2013, no. 2, pp. 57–65.

  7. Wang, W., Roth, J., Lindig, S., and Wu, C., Blister formation of tungsten due to ion bombardment, J. Nucl. Mater., 2001, vol. 299, no. 2, pp. 124–131.

    Article  CAS  Google Scholar 

  8. Ueda, Y., Coenen, J., De Temmerman, G., Doerner, R., Linke, J., Philipps, V., and Tsitrone, E., Research status and issues of tungsten plasma facing materials for ITER and beyond, Fusion Eng. Des., 2014, vol. 89, nos. 7–8, pp. 901–906.

  9. Bhuyan, M., Mohanty, S., Rao, C., Rayjada, P., and Raole, P., Plasma focus assisted damage studies on tungsten, Appl. Surf. Sci., 2013, vol. 264, pp. 674–680.

    Article  CAS  Google Scholar 

  10. Saw, S., Damideh, V., Ali, J., Rawat, R., Lee, P., and Lee, S., Damage study of irradiated tungsten using fast focus mode of a 2.2 kJ plasma focus, Vacuum, 2017, vol. 144, pp. 14–20.

    Article  CAS  Google Scholar 

  11. Gribkov, V.A., Paduch, M., Zielinska, E., Demin, A.S., Demina, E.V., Kazilin, E.E., Latyshev, S.V., Maslyaev, S.A., Morozov, E.V., and Pimenov, V.N., Comparative analysis of damageability produced by powerful pulsed ion/plasma streams and laser radiation on the plasma-facing W samples, Radiat. Phys. Chem., 2018, vol. 150, pp. 20–29.

    Article  CAS  Google Scholar 

  12. Demin, A.S., Maslyaev, S.A., Pimenov, V.N., Gribkov, V.A., Demina, E. V., Latyshev, S.V., Lyakhovitskii, M.M., Sasinovskaya, I.P., Bondarenko, G.G., Gaidar, A.I., and Padukh, M., Effect of power pulsed flows of deuterium ions and deuterium plasma on molybdenum plate, Fiz. Khim. Obrab. Mater., 2017, no. 6, pp. 5–17.

  13. Paju, J., Laas, T., Priimets, J., Vali, B., Shirokova, V., and Laas, K., On the effects of different regimes of plasma pulses affecting the material due to their succession, Nucl. Mater. Energy, 2019, vol. 18, pp. 312–320.

    Article  Google Scholar 

  14. Skakov, M.K., Kolodeshnikov, A.A., Rakhadilov, B.K., Tulenbergenov, T.R., and Sokolov, I.A., Effect of plasma on molybdenum and tungsten as candidate materials for a thermonuclear reactor, Trudy XIX konferentsii “Vzaimodeistvie plazmy s poverkhnost’yu” (Proc. 19th Conf. “Plasma Surface Interactions,” January 28–29, 2016), Moscow: Nat. Res. Nucl. Univ. MEPhI, 2016, pp. 108–111.

  15. Kazanskiy, N.L. and Poletayev, S.D., Numerical simulation of the ablation of thin molybdenum films under laser irradiation, Tech. Phys., 2016, vol. 61, no. 9, pp. 1279–1285. https://doi.org/10.1134/S1063784216090127

    Article  CAS  Google Scholar 

  16. Tyumentsev, A.N., Tret’yak, M.V., Pochivalov, Yu.I., Korotaev, A.D., Ovchinnikov, S., Remnev, G.E., and Isakov, I.F., Formation patterns and features of crater microstructure defects in V and Mo-based alloys after irradiation with a powerful ion beam, Poverkhnost’, 1999, no. 9, pp. 36–44.

  17. Kurtz, R.J., Abe, K., Chernov, V.M., et al., Recent progress on development of vanadium alloys for fusion, J. Nucl. Mater., 2004, vols. 329–333, pp. 47–55.

  18. Kalin, B.A., Stal’tsov, M.S., Tishchenko, A.G., and Chernov, I.I., Vanadium alloys on the threshold of wide application in energetic, Tsvetn. Met., 2016, no. 11 (887), pp. 77–86.

  19. Borovitskaya, I.V., Pimenov, V.N., Gribkov, V.A., et al., Structural changes in the vanadium sample surface induced by pulsed high-temperature deuterium plasma and deuterium ion fluxes, Russ. Metall. (Metally), 2017, vol. 2017, pp. 928–935. https://doi.org/10.1134/S0036029517110064

    Article  Google Scholar 

  20. Neklyudov, I.M., Voevodin, V.N., Laptev, I.N., and Parkhomenko, A.A., Influence of an irradiation on elastic modules of metal materials, Vopr. At. Nauki Tekh. Fiz. Radiats. Povrezh. Radiats. Materialoved., 2014, no. 2 (90), pp. 21–28.

  21. Borovitskaya, I.V., Nikulin, V.Ya., Bondarenko, G.G., et al., Effect of pulsed nitrogen plasma and nitrogen ion fluxes on the structure and mechanical properties of vanadium, Russ. Metall. (Metally), 2018, vol. 2018, pp. 266–275. https://doi.org/10.1134/S0036029518030023

    Article  Google Scholar 

  22. Didyk, A.Yu., Abnormally deep penetration of hydrogen into niobium under the influence of the pulse high-temperature plasma, Phys. Part. Nucl. Lett., 2012, vol. 9, pp. 253–258. https://doi.org/10.1134/S1547477112030077

    Article  CAS  Google Scholar 

  23. Poznyak, I.M., Klimov, N.S., Podkovyrov, V.L., Safronov, V.M., Zhitlukhin, A.M., and Kovalenko, D.V., Erosion of metals under the influence of intense plasma flows, Vopr. At. Nauki Tekh., Termoyad. Sintez, 2012, no. 4, pp. 23–33.

  24. Pimenov, V.N., Borovitskaya, I.V., Demin, A.S., et al., Damage of niobium by pulsed flows of helium ions and helium plasma, Inorg. Mater.: Appl. Res., 2022, vol. 13, pp. 687–695. https://doi.org/10.1134/S2075113322030303

    Article  Google Scholar 

  25. Gribkov, V.A., Borovitskaya, I.V., Demin, A.S., et al., The Vikhr plasma focus device for diagnosing the radiation-thermal resistance of materials intended for thermonuclear energy and aerospace engineering, Instrum. Exp. Tech., 2020, vol. 63, pp. 68–76. https://doi.org/10.1134/S0020441219060162

    Article  Google Scholar 

  26. Morozov, E.V., Demin, A.S., Pimenov, V.N., et al., Features of the damage and the structural changes in the tungsten surface layer under the pulsed action of laser radiation, ion and plasma fluxes, Inorg. Mater.: Appl. Res., 2018, vol. 9, pp. 361–369. https://doi.org/10.1134/S2075113318030231

    Article  Google Scholar 

  27. Borovitskaya, I.V., Gribkov, V.A., Demin, A.S., Yepifanov, N.A., Latyshev, S.V., Maslyaev, S.A., Moro-zov, E.V., Pimenov, V.N., Sasinovskaya, I.P., Bondarenko, G.G., Gaidar, A.I., and Scholz, M., Damage and deformation effects in the surface layers of copper and copper–gallium alloy under pulsed irradiation in a plasma focus unit, Inorg. Mater.: Appl. Res., 2020, vol. 11, no. 5, pp. 1093–1102. https://doi.org/10.1134/S2075113320050056

    Article  Google Scholar 

  28. Pimenov, V.N., Borovitskaya, I.V., Gribkov, V.A., et al., Influence of pulsed flows of deuterium ions and deuterium plasma on Cu–Ni and Cu–Ni–Ga alloys, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2022, vol. 16, pp. 33–41. https://doi.org/10.1134/S1027451022010153

    Article  CAS  Google Scholar 

  29. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Perspective Radiation-Beam Technologies of Material Treatment), Moscow: Kruglyi God, 2001.

  30. Chaus, A.S., Maksimenko, A.V., Fedosenko, N.N., et al., Formation of structure of a high-speed steel upon laser surface melting, Phys. Met. Metallogr., 2019, vol. 120, pp. 269–277. https://doi.org/10.1134/S0031918X19030049

    Article  CAS  Google Scholar 

  31. Poskakalov, A.G., Klimov, N.S., Gasparyan, Yu.M., Ogorodnikova, O.V., and Efimov, V.S., Surface structure modification and deuterium retention in tungsten under pulse plasma loads, Vopr. At. Nauki Tekh., Termoyad. Sintez, 2018, vol. 41, no. 1, pp. 23–28.

    Google Scholar 

  32. Chalmers, B., Principles of Solidification, New York: Wiley, 1964.

    Google Scholar 

  33. Flemings, M.C., Solidification Processing, New York: McGraw-Hill, 1974.

    Book  Google Scholar 

  34. Popov, V.N. and Cherepanov, A.N., Optimization of modifying material distribution during laser processing of the metal surface, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 7, pp. 505–511.

    CAS  Google Scholar 

  35. Gribkov, V.A., Latyshev, S.V., Pimenov, V.N., et al., Features of metal destruction under pulsed laser and beam-plasma exposure, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 361–369. https://doi.org/10.1134/S2075113321020167

    Article  Google Scholar 

Download references

Funding

This work was carried out in accordance with state assignments no. 075-00328-21-00 and no. 075-00715-22-00 and supported by the International Atomic Energy Agency, IAEA CRP grant no. 23664.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Pimenov, I. V. Borovitskaya, A. S. Demin, N. A. Epifanov, E. E. Kazilin, S. V. Latyshev, S. A. Maslyaev, E. V. Morozov, I. P. Sasinovskaya, G. G. Bondarenko or A. I. Gaydar.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, V.N., Borovitskaya, I.V., Demin, A.S. et al. Features of Niobium Damage by Pulsed Laser Radiation in Comparison with Beam-Plasma Impact. Inorg. Mater. Appl. Res. 13, 1238–1246 (2022). https://doi.org/10.1134/S207511332205032X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332205032X

Keywords:

Navigation