Skip to main content
Log in

Reactivity of Triphenyl Phosphorothionate in Lubricant Oil Solution

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Investigating the thermo-oxidative reactivity of anti-wear additives in lubricant oil solution at high temperature can significantly contribute to an understanding of the mechanism of thermal film and tribofilm formation on metal surfaces. In this study, the reactivity of triphenyl phosphorothionate (TPPT) in lubricant oil solution at high temperature (423 and 473 K) has been studied by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The results show that the TPPT molecule was highly thermally stable and did not completely decompose in oil solution even upon heating at 423 K for 168 h and at 473 K for 72 h. The degradation of the TPPT molecule, which turned out to be a first-order reaction, started taking place after 6 h at both temperatures, leading to the breakage of the P=S bond with the formation of triphenyl phosphate. During these heating experiments, no oil-insoluble compounds were detected. The oxidation of the base oil as a result of the prolonged heating demonstrated that the TPPT molecule did not effectively act as oxidation inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004). doi:10.1023/B:TRIL.0000044495.26882.b5

    Article  CAS  Google Scholar 

  2. Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M., Bancroft, G.M.: Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38, 15–39 (2005). doi:10.1016/j.triboint.2004.05.009

    Article  CAS  Google Scholar 

  3. Gellman, A.J., Spencer, N.D.: Surface chemistry in tribology. J. Eng. Tribol. 216, 443–461 (2002)

    CAS  Google Scholar 

  4. Kubsh, J.: Three-way catalyst deactivation associated with oil-derived poisons. In: Bode, H. (ed.) Materials aspects in automotive catalytic converters, pp. 215–222. Wiley-VCH Verlag GmbH & Co, Weinheim (2003)

    Google Scholar 

  5. Spikes, H.: Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubricat. Sci. 20, 103–136 (2008). doi:10.1002/ls.57

    Article  CAS  Google Scholar 

  6. Bovington, C.H.: Friction, wear and the role of additives in their control. In: Mortier, R.M., Orszulik, S.T. (eds.) Chemistry and Technology of Lubricants, pp. 320–348. Blackie Academic & Professional, London (1997)

    Google Scholar 

  7. Piras, F.M.: In situ attenuated total reflection tribometry. PhD thesis no. 14638, ETH Zurich, Zurich, Switzerland (2002)

  8. Gao, F., Kotvis, P.V., Stacchiola, D., Tysoe, W.T.: Reaction of tributyl phosphate with oxidized iron: surface chemistry and tribological significance. Tribol. Lett. 18, 377–384 (2005). doi:10.1007/s11249-004-2768-1

    Article  CAS  Google Scholar 

  9. Sung, D., Gellman, A.J.: The surface chemistry of alkyl and arylphosphate vapor phase lubricants on Fe foil. Tribol. Int. 35, 579–590 (2002). doi:10.1016/S0301-679X(02)00045-2

    Article  CAS  Google Scholar 

  10. Sung, D., Gellman, A.J.: Thermal decomposition of tricresylphosphate isomers on Fe. Tribol. Lett. 13, 9–14 (2002). doi:10.1023/A:1016599502098

    Article  CAS  Google Scholar 

  11. Ren, D., Gellman, A.J.: Reaction mechanisms in organophosphate vapor phase lubrication of metal surfaces. Tribol. Int. 34, 353–365 (2001). doi:10.1016/S0301-679X(01)00025-1

    Article  CAS  Google Scholar 

  12. Matsumoto, K.: Surface chemical and tribological investigations of phosphorus-containing lubricant additives. PhD thesis no. 15150, ETH Zurich, Zurich, Switzerland (2003)

  13. Najman, M.N., Kasrai, M., Bancroft, G.M., Miller, A.: Study of the chemistry of films generated from phosphate ester additives on 52100 steel using X-ray absorption spectroscopy. Tribol. Lett. 13, 209–218 (2002). doi:10.1023/A:1020164127000

    Article  CAS  Google Scholar 

  14. Rossi, A., Piras, F.M., Kim, D., Gellman, A.J., Spencer, N.D.: Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress. Tribol. Lett. 23, 197–208 (2006). doi:10.1007/s11249-006-9051-6

    Article  CAS  Google Scholar 

  15. Saba, C.S., Forster, N.H.: Reactions of aromatic phosphate esters with metals and their oxides. Tribol. Lett. 12, 135–146 (2002). doi:10.1023/A:1014081523491

    Article  CAS  Google Scholar 

  16. Perez, J.M., Ku, C.S., Pei, P., Hegemann, B.E., Hsu, S.M.: Characterization of tricresylphosphate lubricating films by micro-Fourier transform infrared spectroscopy. Tribol. Trans. 33, 131–139 (1990). doi:10.1080/10402009008981939

    Article  CAS  Google Scholar 

  17. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Reaction of tributyl phosphite with oxidized iron: surface and tribological chemistry. Langmuir 20, 7557–7568 (2004). doi:10.1021/la049438t

    Article  PubMed  CAS  Google Scholar 

  18. Ren, D., Gellman, A.: Initial steps in the surface chemistry of vapor phase lubrication by organophosphorus compounds. Tribol. Lett. 6, 191–194 (1999). doi:10.1023/A:1019184312290

    Article  CAS  Google Scholar 

  19. Holbert, A.W., Batteas, J.D., Wong-Foy, A., Rufael, T.S., Friend, C.M.: Passivation of Fe(110) via phosphorus deposition: the reactions of trimethylphosphite. Surf. Sci. 401, L437–L443 (1998). doi:10.1016/S0039-6028(98)00076-4

    Article  CAS  Google Scholar 

  20. Gong, Q., He, W., Liu, W.: The tribological behavior of thiophosphates as additives in rapeseed oil. Tribol. Int. 36, 733–738 (2003). doi:10.1016/S0301-679X(03)00053-7

    Article  CAS  Google Scholar 

  21. Najman, M., Kasrai, M., Bancroft, G.M., Davidson, R.: Combination of ashless antiwear additives with metallic detergents: interactions with neutral and overbased calcium sulfonates. Tribol. Int. 39, 342–355 (2006). doi:10.1016/j.triboint.2005.02.014

    Article  CAS  Google Scholar 

  22. Najman, M.N., Kasrai, M., Bancroft, G.M.: Chemistry of antiwear films from ashless thiophosphate oil additives. Tribol. Lett. 17, 217–229 (2004). doi:10.1023/B:TRIL.0000032448.77085.f4

    Article  CAS  Google Scholar 

  23. Najman, M.N., Kasrai, M., Bancroft, G.M.: Investigating binary oil additive systems containing P and S using X-ray absorption near-edge structure spectroscopy. Wear 257, 32–40 (2004). doi:10.1016/S0043-1648(03)00537-4

    Article  CAS  Google Scholar 

  24. Najman, M.N., Kasrai, M., Bancroft, G.M., Frazer, B.H., De Stasio, G.: The correlation of microchemical properties to antiwear (AW) performance in ashless thiophosphate oil additives. Tribol. Lett. 17, 811–822 (2004). doi:10.1007/s11249-004-8089-6

    Article  CAS  Google Scholar 

  25. Heuberger, R.: Combinatorial study of the tribochemistry of anti-wear lubricant additives. PhD thesis no. 17207, ETH Zurich, Zurich, Switzerland (2007)

  26. Heuberger, R., Rossi, A., Spencer, N.D.: Reactivity of alkylated phosphorothionates with steel: a tribological and surface-analytical study. Lubricat. Sci. 20, 79–102 (2008). doi:10.1002/ls.56

    Article  CAS  Google Scholar 

  27. Koyama, M., Hayakawa, J., Onodera, T., Ito, K., Tsuboi, H., Endou, A., Kubo, M., Del Carpio, C.A., Miyamoto, A.: Tribochemical reaction dynamics of phosphoric ester lubricant additive by using a hybrid tight-binding quantum chemical molecular dynamics method. J. Phys. Chem. B 110, 17507–17511 (2006). doi:10.1021/jp061210m

    Article  PubMed  CAS  Google Scholar 

  28. Hilgetag, G., Teichmann, H.: The alkylating properties of alkyl thiophosphates. Angew. Chem. Int. Ed. 4, 914–922 (1965). doi:10.1002/anie.196509141

    Article  CAS  Google Scholar 

  29. Teichmann, H., Hilgetag, G.: Nucleophilic reactivity of the thiophosphoryl group. Angew. Chem. Int. Ed. 6, 1013–1023 (1967). doi:10.1002/anie.196710131

    Article  CAS  Google Scholar 

  30. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). doi:10.1021/ja00905a001

    Article  CAS  Google Scholar 

  31. Pearson, R.G., Songstad, J.: Application of the principle of hard and soft acids and bases to organic chemistry. J. Am. Chem. Soc. 89, 1827–1836 (1967). doi:10.1021/ja00984a014

    Article  CAS  Google Scholar 

  32. Pearson, R.G.: Chemical Hardness. Wiley, New York (1997)

    Book  Google Scholar 

  33. Rasberger, M.: Oxidative degradation and stabilization of mineral oil based lubricants. In: Mortier, R.M., Orszulik, S.T. (eds.) Chemistry and Technology of Lubricants, pp. 98–143. Blackie Academic & Professional, London (1997)

    Google Scholar 

  34. Socrates, G.: Infrared and Raman Characteristic Group Frequencies. Wiley, Chichester (2001)

    Google Scholar 

  35. Harris, R.K., Becker, E.D., Cabral De Menezes, S.M., Goodfellow, R., Granger, P.: NMR nomenclature. nuclear spin properties and conventions for chemical shifts. Pure Appl. Chem. 73, 1795–1818 (2001). doi:10.1351/pac200173111795

    Article  CAS  Google Scholar 

  36. Roeges, N.P.G.: A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley, Chichester (1994)

    Google Scholar 

  37. Chittenden, R.A., Thomas, L.C.: Characteristic infra-red absorption frequencies of organophosphorus compounds—III. Phosphorus–sulphur and phosphorus–selenium bonds. Spectrochim. Acta 20, 1679–1696 (1964). doi:10.1016/0371-1951(64)80173-9

    Article  ADS  CAS  Google Scholar 

  38. Thomas, L.C., Chittenden, R.A.: Characteristic infrared absorption frequencies of organophosphorus compounds—II. P–O–(X) bonds. Spectrochim. Acta 20, 489–502 (1964). doi:10.1016/0371-1951(64)80044-8

    Article  ADS  CAS  Google Scholar 

  39. Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G.: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, San Diego (1991)

    Google Scholar 

  40. Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy. Wiley, New York (2005)

    Google Scholar 

  41. Günther, H.: NMR Spectroscopy—Basic Principles, Concepts, and Applications in Chemistry. Wiley, New York (1995)

    Google Scholar 

  42. Berger, S., Braun, S., Kalinowski, H.O.: NMR Spectroscopy of the non-metallic elements. Wiley, New York (1997)

    Google Scholar 

  43. Quin, L.D.: A Guide to Organophosphorus Chemistry. Wiley, New York (2000)

    Google Scholar 

  44. Crutchfield, M.M., Dungan, C.H., Letcher, J.H., Mark, V., Van Wazer, J.R.: P31 nuclear magnetic resonance. In: Grayson, M., Griffith, E.J. (eds.) Topics in Phophorus Chemistry. Wiley, New York (1967)

    Google Scholar 

  45. Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy. Academic Press, London (1990)

    Google Scholar 

  46. Adhvaryu, A., Perez, J.M., Singh, I.D., Tyagi, O.S.: Spectroscopic studies of oxidative degradation of base oils. Energy Fuels 12, 1369–1374 (1998). doi:10.1021/ef980134m

    Article  CAS  Google Scholar 

  47. Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectroscopic Identification of Organic Compounds. Wiley, New York (2005)

    Google Scholar 

  48. Hesse, M., Meier, H., Zeeh, B.: Spektroskopische Methoden in der Organischen Chemie, 3. überarbeitete Auflage. Georg Thieme Verlag, Stuttgart (1987)

    Google Scholar 

  49. Barman, B.N.: Behavioral differences between group I and group II base oils during thermo-oxidative degradation. Tribol. Int. 35, 15–26 (2002). doi:10.1016/S0301-679X(01)00073-1

    Article  CAS  Google Scholar 

  50. Coates, J.P., Setti, L.C.: Infrared spectroscopic methods for the study of lubricant oxidation products. ASLE Trans. 29, 394–401 (1986)

    CAS  Google Scholar 

  51. George, G.A., Celina, M., Vassallo, A.M., Cole-Clarke, P.A.: Real-time analysis of the thermal oxidation of polyolefins by FT-IR emission. Polym. Degrad. Stabil. 48, 199–210 (1995). doi:10.1016/0141-3910(95)00035-K

    Article  CAS  Google Scholar 

  52. Owrang, F., Mattsson, H., Olsson, J., Pedersen, J.: Investigation of oxidation of a mineral and a synthetic engine oil. Thermochim. Acta 413, 241–248 (2004). doi:10.1016/j.tca.2003.09.016

    Article  CAS  Google Scholar 

  53. Priéri, F., Gresser, E., Le Dréau, Y., Obiols, J., Kister, J.: New method of simulation to evaluate the sensitivity to oxidation of lubricating oils: an aging cell coupled with Fourier transform infrared spectroscopy. Appl. Spectrosc. 62, 810–816 (2008). doi:10.1366/000370208784909571

    Article  PubMed  ADS  Google Scholar 

  54. Santos, J.C.O., Santos, I.M.G., Souza, A.G., Sobrinho, E.V., Fernandes, J.V.J., Silva, A.J.N.: Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation. Fuel 83, 2393–2399 (2004). doi:10.1016/j.fuel.2004.06.016

    Article  CAS  Google Scholar 

  55. Willermet, P.A., Carter, R.O., Schmitz, P.J., Everson, M., Scholl, D.J., Weber, W.H.: Formation, structure, and properties of lubricant-derived antiwear films. Lubricat. Sci. 9, 325–348 (1997). doi:10.1002/ls.3010090402

    Article  CAS  Google Scholar 

  56. Coy, R.C., Jones, R.B.: The thermal degradation and EP performance of zinc dialkyldithiophosphate additives in white oil. ASLE Trans. 24, 77–90 (1981)

    CAS  Google Scholar 

  57. Dickert, J.J.J., Rowe, C.N.: The thermal decomposition of metal O,O-dialkylphosphorodithioates. J. Org. Chem. 32, 647–653 (1967). doi:10.1021/jo01278a031

    Article  CAS  Google Scholar 

  58. Jones, R.B., Coy, R.C.: The chemistry and thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24, 91–97 (1981)

    ADS  CAS  Google Scholar 

  59. Spedding, H., Watkins, R.C.: The antiwear mechanism of zddp’s. Part I. Tribol. Int. 15, 9–12 (1982). doi:10.1016/0301-679X(82)90101-3

    Article  CAS  Google Scholar 

  60. Mortimer, F.S.: Vibrational assignment and rotational isomerism in some simple organic phosphates. Spectrochim. Acta 9, 270–281 (1957). doi:10.1016/0371-1951(57)80142-8

    Article  ADS  CAS  Google Scholar 

  61. Ribeaud, M.: Volatility of phosphorus-containing anti-wear agents for motor oils. Lubricat. Sci. 18, 231–241 (2006). doi:10.1002/ls.20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the ETH Research Committee for its support of this work. Dr. H. Camenzind (Ciba® Speciality Chemicals, Basel, Switzerland) is thanked for supplying the pure additive. Mrs. D. Sutter and Mr. M. Schneider kindly performed the NMR and the elemental analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangolini, F., Rossi, A. & Spencer, N.D. Reactivity of Triphenyl Phosphorothionate in Lubricant Oil Solution. Tribol Lett 35, 31–43 (2009). https://doi.org/10.1007/s11249-009-9429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9429-3

Keywords

Navigation