Skip to main content
Log in

Reaction of tributyl phosphate with oxidized iron: surface chemistry and tribological significance

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The chemistry of tributyl phosphate on Fe3O4 was studied in ultrahigh vacuum using temperature-programmed desorption (TPD) and Auger spectroscopy. A portion of the tributyl phosphate desorbs intact with an activation energy of ~120 kJ/mol. The remainder decomposes either by P-O bond scission to deposit surface butoxy species or appears to dehydrogenate desorbing C2 or C3 compounds and depositing hydrogen and carbon on the surface. The resulting hydrogen reacts either with the oxide to desorb water or with butoxy species yielding 1-butanol. The remaining butoxy species are stable up to ~600 K where they decompose to desorb butanal via hydride elimination where again the hydrogen reacts with butoxy species to form 1-butanol or with the oxide to form water. The carbon deposited onto the surface further reduces the oxide to desorb as CO above ~750 K, although a small amount of carbon is detected on the surface using Auger spectroscopy. Substantially larger amounts of carbon are deposited onto the surface when Fe3O4 is exposed to tributyl phosphate at 300 K, where an Auger depth profile reveals that the carbon is located at the surface while the POx species formed by tributyl phosphate decomposition diffuse rapidly into the oxide layer, leading to a film structure in which graphitic carbon is deposited onto a phosphorus-containing oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dorinson K.C. Ludema (1985) Mechanics and Chemistry in Lubrication Elsevier Amsterdam

    Google Scholar 

  2. W. Davey (1948) J. Inst. Petroleum 32 575

    Google Scholar 

  3. W. Davey (1948) J. Inst. Petroleum 32 590

    Google Scholar 

  4. P. Studt (1968) Erdol. Kohle. Erdgas. 21 340

    Google Scholar 

  5. A. Dorinson (1973) ASLE Trans. 16 22

    Google Scholar 

  6. G. Gong P. Zhang Q. Xue (1990) Lubr. Eng. 46 566

    Google Scholar 

  7. P.V. Kotvis (1986) Lubr. Eng. 42 363

    Google Scholar 

  8. T.J. Blunt P.V. Kotvis W.T. Tysoe (1998) Tribol. Trans. 41 117

    Google Scholar 

  9. T.J. Blunt P.V. Kotvis W.T. Tysoe (1998) Tribol. Trans. 41 129

    Google Scholar 

  10. J. Lara T.J. Blunt P.V. Kotvis A. Riga W.T. Tysoe (1998) J. Phys. Chem 102 1703

    Google Scholar 

  11. J. Lara K. Surerus P.V. Kotvis M.E. Contreras J.L. Rico W.T. Tysoe (2000) Wear 239 77

    Google Scholar 

  12. E.E. Graham E.E. Klaus (1989) Lubr. Eng. 45 717

    Google Scholar 

  13. N.H. Forster H.K. Trivedi (1997) Tribol. Trans. 40 421

    Google Scholar 

  14. C.S. Saba N.H. Forster (2002) Tribol. Lett. 12 135

    Google Scholar 

  15. P.A. Bertrand (1997) Tribol. Letts. 3 367

    Google Scholar 

  16. N.H. Forster (1999) Tribol. Trans. 42 1

    Google Scholar 

  17. P.V. Kotvis L.A. Huezo W.T. Tysoe (1993) Langmuir 9 467

    Google Scholar 

  18. L.A. Huezo P.V. Kotvis C. Crumer C. Soto W.T. Tysoe (1994) Appl. Surf. Sci. 78 113

    Google Scholar 

  19. J. Lara W.T. Tysoe (1999) Tribol. Lett. 6 195

    Google Scholar 

  20. T.J. Blunt P.V. Kotvis W.T. Tysoe (1996) Tribol. Lett. 2 221

    Google Scholar 

  21. M.N. Najman M. Kasrai G.M. Bancroft (2003) Tribol. Lett. 14 225

    Google Scholar 

  22. D. Ren A.J. Gellman (1999) Tribol. Lett. 6 191

    Google Scholar 

  23. D. Sung A.J. Gellman (2002) Tribol. Int. 35 579

    Google Scholar 

  24. F. Gao O. Furlong P.V. Kotvis W.T. Tysoe (2004) Langmuir 20 7557

    Google Scholar 

  25. F. Zaera (1995) Chem. Rev. 95 2651

    Google Scholar 

  26. B.E. Bent (1996) Chem. Rev. 96 1361

    Google Scholar 

  27. G. Wu F. Gao M. Kaltchev J. Gutow J. Mowlem W.C. Schramm P.V. Kotvis W.T. Tysoe (2002) Wear 252 595

    Google Scholar 

  28. M. Langell G.A. Somorjai (1982) J. Vac. Sci. Technol. 21 858

    Google Scholar 

  29. J.T. V.S. Smentkowski Jr. Yates (1990) Surf. Sci. 232 113

    Google Scholar 

  30. M. Seo J.B. Lumsden R.W. Staehle (1975) Surf. Sci. 50 541

    Google Scholar 

  31. P.A. Redhead (1962) Vacuum 12 203

    Google Scholar 

  32. E. Murray J. Prasad H. Cabilil J.A. Kelber (1994) Surf. Sci. 319 1

    Google Scholar 

  33. Z. Zhang M. Kasrai G.M. Bancroft E.S. Yamaguchi (2003) Tribol. Lett. 15 377

    Google Scholar 

  34. E.S. Yamaguchi Z. Zhang M. Kasrai G.M. Bancroft (2003) Tribol. Lett. 15 385

    Google Scholar 

  35. K. Varlot M. Kasrai J.M. Martin B. Vacher G.M. Bancroft E.S. Yamaguchi P.R. Ryason (2000) Tribol. Lett. 8 9

    Google Scholar 

  36. M.L. Suominen Fuller M. Rodriguez Fernandez G.R. Massoumi W.N. Lennard M. Kasrai G.M. Bancroft (2000) Tribol. Lett. 8 187

    Google Scholar 

  37. M.A. Nicholls T. Do P.R. Norton G.M. Bancroft M. Kasrai T.W. Capehart Y.-T. Cheng T. Perry (2003) Tribol. Lett. 15 241 Occurrence Handle10.1023/A:1024813203442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Kotvis, P.V., Stacchiola, D. et al. Reaction of tributyl phosphate with oxidized iron: surface chemistry and tribological significance. Tribol Lett 18, 377–384 (2005). https://doi.org/10.1007/s11249-004-2768-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-2768-1

Keywords

Navigation