Skip to main content
Log in

Dynamics in the Bridged State of a Magnetic Recording Slider

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A novel region of tribological interaction is explored by inducing near contact between the magnetic recording slider and disk. In this study, we performed frictional measurements over a wide range of subambient air pressure and disk rotation rate. Since the slider is supported over the disk by an air bearing, it has been found that cycling from ambient to subambient and then back up to ambient pressure over several minutes of time forms a frictional hysteresis loop. The high-friction branch of the loop, referred to as the bridged state, is characterized by an average frictional displacement and resonant vibration of the suspension mount assembly. The bridged state is currently employed for accelerated wear testing of magnetic slider/disk/lubricant systems. Future magnetic recording systems designed to operate at increasingly lower physical spacing will need to take into account these frictional forces which accompany the incipient contact between the lubricated disk and slider with finite surface roughness. A single degree of freedom model is solved to determine the equivalent dynamic friction force on the slider as an impulse series with random impulse frequency and amplitude from the measured frictional displacement in the bridged state. The mean slider-disk spacing in the bridged state is derived from the experimental friction force, the spacing probability density function, and the adhesion stress from the Lifshitz model for dispersion interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yuan, Z-M., Liu, B., Wang, J.: Flash temperature induced magnetic degradation in high density magnetic recording. J. Appl. Phys. 87, 6158–6160 (2000)

    Article  CAS  Google Scholar 

  2. Tao, Q., Lee, H.P., Lim, S.P.: Contact analysis of impact in magnetic head disk interfaces. Tribol. Int. 36, 49–56 (2003)

    Article  Google Scholar 

  3. Thornton, B.H., Bogy, D.B.: Head-disk interface dynamic instability due to intermolecular forces. IEEE Trans. Magn. 39, 2420–2422 (2003)

    Article  Google Scholar 

  4. Ambekar, R., Gupta, V., Bogy, D.B.: Experimental and numerical investigation of dynamic instability in the head disk interface at proximity. J. Tribol. 127, 530–536 (2005)

    Article  Google Scholar 

  5. Kato, T., Watanabe, S., Matsuoka, H.: Dynamic characteristics of an in-contact head slider considering meniscus force: part 1—formulation and application to the disk with sinusoidal undulation. J. Tribol. 122, 633–638 (2000)

    Article  Google Scholar 

  6. Kato, T., Watanabe, S., Matsuoka, H.: Dynamic characteristics of an in-contact head slider considering meniscus force: part 2—application to the disk with random undulation and design conditions. J. Tribol. 123, 168–174 (2001)

    Article  Google Scholar 

  7. Tanaka, H., Yonemura, S., Tokisue, H.: Slider dynamics during continuous contact with textured and smooth disks in ultra low flying height. IEEE Trans. Magn. 37, 906–911 (2001)

    Article  Google Scholar 

  8. Mate, C.M., Arnett, P.C., Baumgart, P., Dai, Q., Guruz, U.M., Knigge, B.E., Payne, R.N., Ruiz, O.J., Wang, G.J., Yen, B.K.: Dynamics of contacting head-disk interfaces. IEEE Trans. Magn. 40, 3156–3158 (2004)

    Article  Google Scholar 

  9. Xu, J.G., Kohira, H., Tanaka, H., Saegusa, S.: Partial-contact head-disk interface approach for high-density recording. IEEE Trans. Magn. 41, 3031–3033 (2005)

    Article  Google Scholar 

  10. Ono, K., Ohara, S.: Experimental identification of elastic, damping and adhesion forces in collision of spherical sliders with stationary magnetic disks. J. Tribol. 127, 365–375 (2005)

    Article  CAS  Google Scholar 

  11. Ono, K., Yamane, M., Yamaura, H.: Experimental and analytical study of bouncing vibrations of a flying head slider in a near-contact regime. J. Tribol. 127, 376–386 (2005)

    Article  Google Scholar 

  12. Mayeed, M.S., Kato, T., Jhon, M.S., Mitsuya, Y.: Surface perturbations on the perfluoropolyether molecules in the melt and the gas-like conditions. IEEE Trans. Magn. 40, 3180–3182 (2004)

    Article  CAS  Google Scholar 

  13. Matsuoka, H., Ohkubo, S., Fukui, S.: Corrected expression of the van der Waals pressure for multilayered system with application to analyses of static characteristics of flying head sliders with an ultrasmall spacing: Microsyst Techn. Micro Nanosyst—Inf. Stor. Proc. Syst. 11, 824–829 (2005)

    CAS  Google Scholar 

  14. Tanaka, K., Kato, T., Matsumoto, Y.: Molecular dynamics simulation of vibrational friction force due to molecular deformation in confined lubricant film. J. Tribol. 125, 587–591 (2003)

    Article  CAS  Google Scholar 

  15. Kamei, D., Zhou, H., Suzuki, K., Konno, K., Takami, S., Kubo, M., Miyamoto, A.: Computational chemistry study on the dynamics of lubricant molecules under shear conditions. Tribol. Int. 36, 297–303 (2003)

    Article  CAS  Google Scholar 

  16. Khurshudov, A., Baumgart, P., Waltman, R.J.: In-situ quantitative analysis of nano-scale lubricant migration at the slider-disk interface. Wear 229, 690–699 (1999)

    Article  Google Scholar 

  17. Khurshudov, A., Waltman, R.J.: The contribution of thin PFPE lubricants to slider-disk spacing. Tribol. Lett. 11, 143–149 (2001)

    Article  CAS  Google Scholar 

  18. Waltman, R.J., Khurshudov, A.G.: The contribution of thin PFPE lubricants to slider-disk spacing. 2. effect of film thickness and lubricant end groups. Tribol. Lett. 13, 197–202 (2002)

    Article  CAS  Google Scholar 

  19. Novotny, V.J.: Mechanical integration of high recording density drives. IEEE Trans. Magn. 32, 1826–1831 (1996)

    Article  Google Scholar 

  20. Karis, T.E., Tawakkul, M.A.: Water adsorption and friction on thin film magnetic recording disks. Tribol. Trans. 46, 469–478 (2003)

    Article  CAS  Google Scholar 

  21. Karis, T.E., Nayak, U.V.: Liquid nanodroplets on thin film magnetic recording disks. Tribol. Trans. 47, 103–110 (2004)

    Article  CAS  Google Scholar 

  22. Karis, T.E., Kim, W.T., Jhon, M.S.: Spreading and dewetting in nanoscale lubrication. Tribol. Lett. 18, 27–41 (2005)

    Article  CAS  Google Scholar 

  23. Tagawa, N., Mori, A.: Effects of functional end-groups on nano-tribology characteristics of ultra-thin liquid lubricant films in hard disk drives. IEEE Trans. Magn. 41, 825–830 (2005)

    Article  CAS  Google Scholar 

  24. Bai, M., Kato, K.: Analysis of contact deformation and stiction between textured disk and textured slider. J. Tribol. 123, 350–357 (2001)

    Article  Google Scholar 

  25. Suh, A.Y., Polycarpou A.: Adhesive contact modeling for sub-5-nm ultralow flying magnetic storage head-disk interfaces including roughness effects. J. Appl. Phys. 97, 104328-1–104328-11 (2005)

    Google Scholar 

  26. Karis, T.E.: Lubricants for the disk drive industry. In: Rudnick, L. (ed.), Synthetic, Mineral Oil, and Bio-Based Lubricants Chemistry and Technology, CRC Press, Taylor & Francis Group, LLC, Boca Raton, FL, pp. 623–654 (2006)

    Google Scholar 

  27. Ambekar, R.P., Bogy D.B., Dai Q., Marchon B.: Critical clearance and lubricant instability at the head-disk interface of a disk drive. Appl. Phys. Lett. 92, 033104-1–033104-3 (2008)

    Article  CAS  Google Scholar 

  28. Crone, R.M., Peck, P.R., Jhon, M.S., Karis, T.E.: Scaling criteria for slider miniaturization using the generalized reynolds equation. J. Tribol. 115, 566–572 (1993)

    Article  Google Scholar 

  29. Karis, T.E., Guo, X.-C., Marinero, E., Marchon, B.: Surface chemistry of NiP plated substrates. IEEE Trans. Magn. 41, 3247–3249 (2005)

    Article  CAS  Google Scholar 

  30. Karis, T.E.: Tribochemistry in contact recording. Tribol. Lett. 10, 149–162 (2001)

    Article  CAS  Google Scholar 

  31. Karis, T.E.: Water adsorption on thin film magnetic recording media. J. Coll. Int. Sci. 225, 196–203 (2000)

    Article  CAS  Google Scholar 

  32. Man, Y.J., Yu S.K., Liu B.: Characterization and formation mechanism understanding of asperities to be burnished. J. Magn. Magn. Mater. 303, e101–e105 (2006)

    Article  CAS  Google Scholar 

  33. Fred Li, Z., Chen, C-Y., Liu, J.J.: Study of head-disk interference at low-flying height. IEEE Trans. Magn. 39, 2462–2464 (2003)

    Article  CAS  Google Scholar 

  34. Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39, 2447–2449 (2003)

    Article  CAS  Google Scholar 

  35. Ma, X., Chen, J., Richter, H.J., Tang, H., Gui, J.: Contribution of lubricant thickness to head—media spacing. IEEE Trans. Magn. 37, 1824–1826 (2001)

    Article  CAS  Google Scholar 

  36. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Company, New York, NY (1965)

    Google Scholar 

  37. Yoshizawa, H., Chen, Y-L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  CAS  Google Scholar 

  38. Persson, B.N.J.: Theory of friction: friction dynamic for boundary lubricated surfaces. Phys. Rev. B 55, 8004–8012 (1997)

    Article  CAS  Google Scholar 

  39. Yatsue, T., Ishihara, H., Matsumoto, H., Tani, H.: Design of carbon surface functional groups on the viewpoint of lubricant layer structure. Trib. Trans. 43, 802–808 (2000)

    Article  CAS  Google Scholar 

  40. French, R.H.: Origins and applications of london dispersion forces and hamaker constants in ceramics. J. Am. Ceram. Soc. 83, 2117–2146 (2000)

    Article  CAS  Google Scholar 

  41. Ninham, B.W., Parsegian, V.A.: Van der walls forces across triple-layer films. J. Chem. Phys. 52, 4578–4587 (1970)

    Article  CAS  Google Scholar 

  42. White, L.R., Dagastine, R.R., Jones, P.M., Hsia Y-T.: Van der waals force calculation between laminated media, pertinent to the magnetic storage head-disk interface. J. Appl. Phys. 97, 104503 (2005)

    Article  CAS  Google Scholar 

  43. Hough, D.B., White, L.R.: The calculation of hamaker constants from lifshitz theory with applications to wetting phenomena. Adv. Coll. Int. Sci. 14, 3–41 (1980)

    Article  CAS  Google Scholar 

  44. Dagastine, R.R., White, L.R., Jones, P.M., Hsia Y-T.: Effect of media overcoat on van der waals interaction at the head-disk interface. J. Appl. Phys. 97, 126106 (2005)

    Article  CAS  Google Scholar 

  45. Karis, T.E., Guo X-C.: Molecular adhesion model for the bridged state of a magnetic recording slider. IEEE Trans. Magn. 43, 2232–2234 (2007)

    Article  CAS  Google Scholar 

  46. Marchon, B., Karis, T., Dai, Q., Pit, R.: A model for lubricant flow from disk to slider. IEEE Trans. Magn. 39, 2447–2449 (2003)

    Article  CAS  Google Scholar 

  47. Ma, Y.S., Liu, G.: Lubricant transfer from disk to slider in hard disk drives. Appl. Phys. Lett. 90, 143516 (2007)

    Article  CAS  Google Scholar 

  48. Waltman, R.J., Tyndall, G.W., Pacansky, J., Berry, R.J.: Impact of polymer structure and confinement on the kinetics of zdol 4000 bonding to amorphous-hydrogenated carbon. Tribol. Lett. 7, 91–102 (1999)

    Article  CAS  Google Scholar 

  49. Aranson, I.S., Tsimring, L.S., Vinokur, V.M.: Stick-slip friction and nucleation dynamics of ultrathin liquid films. Phys. Rev. B 65, 125402 (2002)

    Article  CAS  Google Scholar 

  50. Narumanchi, S.V.J., Murthy, J.Y., Amon, C.H.: Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics. Heat Mass Transfer 42, 478–491 (2006)

    Article  Google Scholar 

  51. Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)

    Article  CAS  Google Scholar 

  52. Mriziq, K.S., Dai, H.J., Dadmun, M.D., Jellison, G.E., Cochran, H.D.: High-shear-rate optical rheometer. Rev. Sci. Instr. 75, 2171–2176 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank B. Marchon, P. Baumgart, M. Mate, V. Nayak, R. Payne, B. Knigge, F. Hendriks, and Q. Dai for technical discussions. The authors are also grateful to J. He, R. White, J. Hopkins, and R-H. Wang for their assistance with the investigations of surface indentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Karis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karis, T.E., Guo, XC. & Juang, JY. Dynamics in the Bridged State of a Magnetic Recording Slider. Tribol Lett 30, 123–140 (2008). https://doi.org/10.1007/s11249-008-9319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9319-0

Keywords

Navigation