Skip to main content
Log in

Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Fourier diffusion has been found to be inadequate for the prediction of heat conduction in modern microelectronics, where extreme miniaturization has led to feature sizes in the sub-micron range. Over the past decade, the phonon Boltzmann transport equation (BTE) in the relaxation time approximation has been employed to make thermal predictions in dielectrics and semiconductors at micro-scales and nano-scales. This paper presents a review of the BTE-based solution methods widely employed in the literature and recently developed by the authors. First, the solution approaches based on the gray formulation of the BTE are presented. The semi-gray approach, moments of the Boltzmann equation, the lattice Boltzmann approach, and the ballistic-diffusive approximation are also discussed. Models which incorporate greater details of phonon dispersion are also presented. Hotspot self-heating in sub-micron SOI transistors and transient electrostatic discharge in NMOS transistors are also examined. Results, which illustrate the differences between some of these models reveal the importance of developing models that incorporate substantial details of phonon physics. The impact of boundary conditions on thermal predictions is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C :

Total volumetric heat capacity (J/m3 K)

C w :

Volumetric specific heat per unit frequency (Js/m3 K)

D(w):

Phonon density of states (m−3)

e total :

Total energy (J/m3)

f w :

Phonon distribution function

\(\hbar \) :

Reduced Planck’s constant (= h/(2π), 1.054 × 10−34 Js)

k B :

Boltzmann’s constant (1.38 × 10−23 J/K)

K :

Thermal conductivity (W/m K)

N LA , N TA :

Number of frequency bands in LA and TA branches

N bands :

Total number of frequency bands (N LA + N TA + 1)

N θ, N ϕ :

Number of θ and ϕ divisions in an octant

q vol :

Volumetric heat generation (W/m3)

\(\vec r\) :

Position vector (m)

\(\hat s\) :

Unit direction vector

t :

Time (s)

T :

Temperature (K)

v :

Phonon velocity (m/s)

w :

Phonon frequency (rad/s)

Δw :

Frequency width (rad/s)

ϕ:

Azimuthal angle

γ:

Band-averaged inverse relaxation time for interaction (s−1)

τ:

Relaxation time of a phonon (s)

θ:

Polar angle (degrees)

i:

ith frequency band

ij:

Property specific to bands i and j

L:

Lattice

O:

Optical mode

P:

Propagating mode

R:

Reservoir mode

w:

Phonon frequency

0:

Equilibrium condition

References

  1. Amon CH, Narumanchi SVJ, Madrid M, Gomes C, Goicochea J (2005a) Hierarchical modeling of thermal transport from nano-to-macroscales. In: Kakac S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) Microscale heat transfer—fundamental and applications. Kluwer Academic Publishers, The Netherlands, pp379–400

    Chapter  Google Scholar 

  2. Amon CH, Ghai SS, Kim WT, Jhon MS (2005b) Modeling of nanoscale transport phenomena: application to information technology. Phys A (in press)

  3. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishers, Philadelphia

    Google Scholar 

  4. Asheghi M (2002) Nanoscale energy transport in information technology research with an application to high-density data storage devices and systems. ASME international mechanical engineering congress and exposition, Paper No. IMECE2002-32110, New Orleans, LO

  5. Asheghi M, Touzelbaev MN, Goodson KE, Leung YK, Wong SS (1998) Temperature-dependent thermal conductivity of single-crystal silicon layers in soil substrates. J Heat Transfer 120:30–36

    Article  Google Scholar 

  6. Asheghi M, Kurabayashi K, Kasnavi R, Goodson KE (2002) Thermal conduction in doped single-crystal silicon films. J Appl Phys 91(8):5079–5088

    Article  Google Scholar 

  7. Balandin A, Wang KL (1998) significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58(3):1544–1549

    Article  Google Scholar 

  8. Brockhouse BN (1959) Lattice vibrations in silicon and germanium. Phys Rev Lett 2(6):256–259

    Article  Google Scholar 

  9. Cahill DG, Goodson KE, Majumdar A (2002) Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. ASME J Heat Transfer 124:223–241

    Article  Google Scholar 

  10. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  Google Scholar 

  11. Chai JC, Lee HS, Patankar SV (1994) Finite volume method for radiation heat transfer. J Thermophys Heat Transfer 8(3):419–425

    Google Scholar 

  12. Chen G (1997) Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J Heat Transfer 119:220–229

    Article  Google Scholar 

  13. Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958–14973

    Article  Google Scholar 

  14. Chen G (1999) Phonon wave heat conduction in thin films and superlattices. J Heat Transfer 121:945–953

    Article  Google Scholar 

  15. Chen G (2001) Ballistic-diffusive heat conduction equations. Phys Rev Lett 86(11):2297–2300

    Article  Google Scholar 

  16. Chen G (2002) Ballistic-diffusive equations for transient heat conduction from nano to macroscales. ASME J Heat Transfer 124:320–328

    Article  Google Scholar 

  17. Darwish MS, Moukalled FH (1994) Normalized variable and space formulation methodology for high-resolution schemes. Numer Heat Transfer Part B 26:79–96

    Article  Google Scholar 

  18. Duncan A, Ravaioli U, Jakumeit J (1998) Full-band Monte Carlo investigation of carrier trends in the scaling of metal-oxide semiconductor field-effect transistors. IEEE Trans Electron Devices 45:867–876

    Article  Google Scholar 

  19. Escobar R, Ghai SS, Jhon MS, Amon CH (2003) Time-dependent simulations of sub-continuum heat generation effects in electronic devices using the lattice boltzmann method. International Mechanical Engineering Congress and Exposition. IMECE 2003-41522

  20. Escobar R, Ghai SS, Jhon MS, Amon CH (2005) Multi-length and time scale thermal transport using the lattice boltzmann method with application to electronics cooling. Int J Heat Mass Transfer (in press)

  21. Ferry DK (2000) Semiconductor transport. Taylor & Francis, NY

    Google Scholar 

  22. Flik MI, Choi BI, Goodson KE (1992) Heat transfer regimes in microstructures. ASME J Heat Transfer 114:666–674

    Google Scholar 

  23. Fushinobu K, Hijikata K, Majumdar A (1995a) Heat generation in sub-micron GaAs MESFETs. In: Proceedings—international intersociety electronic packaging conference EEP. Adv Electron Packaging 10(2):897–902

    Google Scholar 

  24. Fushinobu K, Majumdar A, Hijikata K (1995b) Heat generation and transport in submicron semiconductor devices. ASME J Heat Transfer 117:25–31

    Article  Google Scholar 

  25. Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int J Numer Methods Fluids 8:617–641

    Article  MATH  MathSciNet  Google Scholar 

  26. Ghai SS, Escobar R, Jhon MS, Amon CH (2003) Sub-continuum heat conduction in electronics using the Lattice-Boltzmann method. The Pacific rim/ASME international electronic packaging technical conference and exhibition. ASME Inter PACK 2003-35258

  27. Ghai SS, Kim WT, Escobar RA, Amon CH, Jhon MS (2005a) A novel heat transfer model and its application to information storage systems. J Appl Phys 97: 10P703

    Article  Google Scholar 

  28. Ghai SS, Amon CH, Kim WT, Jhon MS (2005b) Transient thermal responses of a nanoscale hotspot in a film with alternating materials. INTERMAG 2005, Nagoya, Japan

    Google Scholar 

  29. Goodson KE (1996) Thermal conduction in nonhomogeneous CVD diamond layers in electronic microstructures. ASME J Heat Transfer 118:279–286

    Article  Google Scholar 

  30. Goodson KE, Ju YS, Asheghi M (1998) Thermal phenomena in semiconductor devices and interconnects. In: Tien CL, Majumdar A, Gerner FM (eds) Microscale energy transport. Taylor & Francis, NY

    Google Scholar 

  31. Han Y-J, Klemens PG (1993) Anharmonic thermal resistivity of dielectric crystals at low temperatures. Phys Rev B 48:6033–6042

    Article  Google Scholar 

  32. Holland MG (1963) Analysis of Lattice thermal conductivity. Phys Rev 132(6):2461–2471

    Article  MathSciNet  Google Scholar 

  33. Joshi AA, Majumdar A (1993) Transient ballistic and diffusive phonon transport in thin films. J Appl Phys 74(1):31–39

    Article  Google Scholar 

  34. Ju YS (1999) Microscale heat conduction in integrated circuits and their constituent films. PhD Thesis, Department of Mechanical Engineering, Stanford University, Stanford

  35. Ju YS, Goodson KE (1999) Phonon scattering in silicon thin films with thickness of order 100 nm. Appl Phys Lett 74(20):3305–3307

    Article  Google Scholar 

  36. Kittel C (1996) Introduction to solid state physics. Wiley, NY

    Google Scholar 

  37. Klemens PG (1958) Thermal conductivity and lattice vibrational modes. In: Seitz F, Thurnbull D (eds) Solid state physics, vol 7. Academic Press, New York, pp1–98

  38. Klemens PG (1969) Theory of thermal conductivity of solids. In: Tye RP (ed) Thermal conductivity, vol 1. Academic Press, London, pp1–68

  39. Lai J, Majumdar A (1996) Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J Appl Phys 79(9):7353–7361

    Article  Google Scholar 

  40. Lundstrom M (2000) Fundamentals of carrier transport. Cambridge University Press, Cambridge

    Google Scholar 

  41. Majumdar A (1993) Microscale heat conduction in dielectric thin films. ASME J Heat Transfer 115:7–16

    Google Scholar 

  42. Majumdar A (1998) Microscale energy transport in solids. In: Tien C-L, Majumdar A, Gerner FM (eds) Microscale energy transport. Washington DC, Taylor & Francis, NY, pp1–94

    Google Scholar 

  43. Majumdar A, Fushinobu K, Hijikata K (1995) Effect of gate voltage on hot-electron and hot-phonon interaction and transport in a submicrometer transistor. J Appl Phys 77(12):6686–6694

    Article  Google Scholar 

  44. Mazumder S, Majumdar A (2001) Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. ASME J Heat Transfer 123:749–759

    Article  Google Scholar 

  45. Murthy JY, Mathur SR (1998) Finite volume method for radiative heat transfer using unstructured meshes. J Thermophys Heat Transfer 12(3):313–321

    Article  Google Scholar 

  46. Murthy JY, Mathur SR (2003) Ballistic-diffusive approximation for phonon transport accounting for polarization and dispersion. ASME summer heat transfer conference, paper No. HT2003-47491

  47. Narumanchi SVJ, Murthy JY, Amon CH (2003a) Computations of sub-micron heat transport in silicon accounting for phonon dispersion. ASME summer heat transfer conference. HT2003-47490, Las Vegas, NV

  48. Narumanchi SVJ, Murthy JY, Amon CH (2003b) Simulations of heat conduction in sub-micron silicon-on-insulator transistors accounting for phonon dispersion and polarization. ASME international mechanical engineering congress and exposition. IMECE 2003-42447, Washington, DC

  49. Narumanchi SVJ, Murthy JY, Amon CH (2003c) Simulation of unsteady small heat source effects in sub-micron heat conduction. ASME J Heat Transfer 125(5):896–903

    Article  Google Scholar 

  50. Narumanchi SVJ, Murthy JY, Amon CH (2004a) Heat transport during transient electrostatic discharge events in a sub-micron transistor. In: Proceedings—ASME Heat transfer/fluids engineering summer conference, Charlotte, NC, paper No. HT-FED2004-56252

  51. Narumanchi SVJ, Murthy JY, Amon CH (2005) Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors. ASME J Heat Transfer 127:713–723

    Article  Google Scholar 

  52. Narumanchi SVJ, Murthy JY, Amon CH (2004) Sub-micron heat transport model in silicon accounting for phonon dispersion and polarization. ASME J Heat Transfer 126:946–955

    Article  Google Scholar 

  53. Patankar SV (1980) Numerical heat transfer and fluid flow. Taylor & Francis, NY

    MATH  Google Scholar 

  54. Pop E, Sinha S, Goodson KE (2003) Detailed phonon generation simulations via the Monte–Carlo method. In: Proceedings—ASME summer heat transfer conference, paper No. HT2003-47312, Las Vegas, NV

  55. Succi S (2001) The lattice-Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford, UK

    MATH  Google Scholar 

  56. Sverdrup PG (2000) Simulation and thermometry of sub-continuum heat transport in semiconductor devices. PhD Thesis, Department of Mechanical Engineering, Stanford University, Stanford

  57. Sverdrup PG, Ju YS, Goodson KE (2001) Sub-continuum simulations of heat conduction in silicon-on-insulator transistors. ASME J Heat Transfer 123:130–137

    Article  Google Scholar 

  58. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668

    Article  Google Scholar 

  59. Touloukian YS, Buyco EH (1970) Thermal conductivity: non-metallic solids thermophysical properties of matter. Plenum press, New York, IFI

    Google Scholar 

  60. Zhang W, Fisher TS (2002) Application of the lattice-Boltzmann method to sub-continuum heat conduction. International mechanical engineering congress and exposition, IMECE2002-32122

Download references

Acknowledgements

The support of NSF grants CTS-0103082 and CTS-0219008, and the PITA program of the Pennsylvania Department of Community and Economic Development, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina H. Amon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narumanchi, S.V.J., Murthy, J.Y. & Amon, C.H. Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics. Heat Mass Transfer 42, 478–491 (2006). https://doi.org/10.1007/s00231-005-0645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0645-6

Keywords

Navigation