Skip to main content
Log in

Surface modification of AFM silicon probes for adhesion and wear reduction

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tip wear of silicon probes used for an atomic force microscope (AFM) is a critical issue. Wear can result in an increase of tip radius and adhesion between tip and sample, thus reducing the image resolution and introducing artifacts. In order to reduce adhesion, friction, and wear so as to reduce tip related artifacts, liquid lubricant (Z-TETRAOL), self-assembled monolayers (pentafluorophenyltriethoxysilane (PFPTES)), and fluorocarbon polymer (Fluorinert™) were applied on the silicon probe. A comprehensive investigation of adhesion, friction, and wear of the uncoated/coated tips in both ambient air and various humidity levels as well as the influence of the coatings on the image resolution was performed. Experiments showed that the coatings reduced the adhesion, friction, and wear of the silicon tip, improved the initial image resolution, and exhibited less deterioration as compared to that of uncoated tip in the long-term test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Bhushan B., 2004 Springer Handbook of NanotechnologySpringer-Verlag Heidelberg, Germany

    Google Scholar 

  2. Bhushan B., 2005 Nanotribology and Nanomechanics – An Introduction Springer Verlag Heidelberg, Germany

    Google Scholar 

  3. Bhushan B., Fuchs H., Hosaka S., 2004 Applied Scanning Probe Methods Springer Verlag Heidelberg, Germany

    Google Scholar 

  4. Bhushan B., 2002 Introduction to TribologyJohn Wiley New York

    Google Scholar 

  5. Bloo M.L., Haitjema H., Pril W.O., (1999) Measurement 25:203

    Article  Google Scholar 

  6. Maw W., Stevens F., Langford S.C., Dickinson J.T., (2002) J. Appl. Phys. 92:5103

    Article  CAS  Google Scholar 

  7. Skarman B., Wallenberg L.R., (2000) Langmuir 6:6267

    Article  CAS  Google Scholar 

  8. Su C., Huang L., Kjoller K., Babcock K., (2003) Ultramicroscopy 97:135

    Article  CAS  Google Scholar 

  9. Edwards H., McGlothlin R., Elisa U., (1998) J. Appl. Phys. 83:3952

    Article  CAS  Google Scholar 

  10. Grutter P., Zimmermann-Edling W., Brodbeck D., (1992) Appl. Phys. Lett. 60:2741

    Article  CAS  Google Scholar 

  11. Westra K.L., Mitchell A.W., Thomson D.J., (1993) J. Appl. Phys. 74:3608

    Article  CAS  Google Scholar 

  12. Magonov S.N., Whangbo M.H., 1996 Surface Analysis with STM and AFM VCH, Weinheim New York

    Google Scholar 

  13. Knapp H.F., Stemmer A., (1999) Surf. Interface Anal. 27:324

    Article  CAS  Google Scholar 

  14. Bhushan B., 1996 Tribology and Mechanics of Magnetic Storage Devices, (2 ed). Springer Verlag New York

    Google Scholar 

  15. Tao Z., Bhushan B., (2005) Wear 239:1352

    Article  CAS  Google Scholar 

  16. Bhushan B., Hansford D., Lee K.K., 2006 J. Vac. Sci. Technol. A. (in press)

    Google Scholar 

  17. Lee K.K., Bhushan B., Hansford D., (2005) J. Vac. Sci. Technol. A 23:804

    Article  CAS  Google Scholar 

  18. Liu H., Veeco Metrology, LLC, personal communication (2005)

  19. Ruhe J., Kuan S., Blackman G., Novotny V., Clarke T., Street G.B., (1992) ACS Sym. Ser. 485:156

    Article  CAS  Google Scholar 

  20. Bhushan B., Zhao Z., (1999) J. Info. Storage Proc. Syst. 1:1

    Google Scholar 

  21. Liu H., Bhushan B., (2003) Ultramicroscopy 97:321

    Article  CAS  Google Scholar 

  22. Bhushan B., Liu H., (2001) Phys. Rev. B 63:1

    Article  CAS  Google Scholar 

  23. Liu H., Bhushan B., (2002) Ultramicroscopy 91:185

    Article  CAS  Google Scholar 

  24. Bhushan B., Kasai T., Kulik G., Barbieri L., Hoffman P., (2005) Ultramicroscopy 105:176

    Article  CAS  Google Scholar 

  25. Kasai T., Bhushan B., Kulik G., Barbieri L., Hoffman P., (2005) J. Vac. Sci. Technol. B 23:995

    Article  CAS  Google Scholar 

  26. Tambe N.S., Bhushan B., (2005) Nanotechnology 16:1549

    Article  CAS  Google Scholar 

  27. Israelachvili J., 1991 Intermolecular, and Surface Forces, (2 ed). Academic Press London

    Google Scholar 

  28. Senden T.J., Drummond C.J., (1995) Colloids Surfaces A 94:29

    Article  CAS  Google Scholar 

  29. Lide D.R., 1994 CRC Handbook of Chemistry and Physics, (75th ed). CRC press Boca Raton, FL

    Google Scholar 

  30. Bhushan B., Venkatesan S., (1993) Adv. Inform. Storage Syst. 5:211

    Google Scholar 

  31. Katsuki F., Kamei K., Saguchi A., Takahashi W., Watanabe J., (2000) J. Electrochem. Soc. 147:2328

    Article  CAS  Google Scholar 

  32. van der Zwan M.L.W., Bardwell J.A., Sproule G.I., Graham M.J., (1994) Appl. Phys. Lett. 64:446

    Article  Google Scholar 

  33. O’Shea S.J., Welland M.E., (1998) Langmuir 14:4186

    Article  CAS  Google Scholar 

  34. Villarrubia J.S., (1994) Surf. Sci. 321:287

    Article  CAS  Google Scholar 

  35. Xu S., Arnsdorf M.F., (1994) J. Microsc. 173:199

    CAS  Google Scholar 

  36. Li Y., Lindsay S.M., (1991) Rev. Sci. Instrum. 62:2630

    Article  CAS  Google Scholar 

  37. Thundat T., Zheng X.Y., Sharp S.L., Allison D.P., Warmack R.J., Joy D.C., Ferrell T.L., (1992) Scan. Microsc. 6:903

    CAS  Google Scholar 

  38. Bogdanov A.L., Erts D., Nilsson B., Olin H., (1994) J. Vac. Sci. Technol. B 12:3681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Veeco Metrology, LLC, Digital Instruments, Santa Barbara, CA. The authors would like to thank Jim Young, Matt Klonowski, and Dr. Bernard Liu of Digital Instruments (DI) for providing the probes and technical discussions. The authors also would like to thank K. K. Lee for preparing PFPTES and Fluorinert coatings and Dr. G. Wei for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bhushan.

Appendix: Tip characterization principles

Appendix: Tip characterization principles

The tip geometry can be measured independently using scanning electron microscopy (SEM) or transmission electron microscopy (TEM) and can also be measured by AFM imaging an ultrasharp geometry (sharper than AFM tip), known as tip characterizer, and analyzing the data for tip reconstruction using a tip deconvolution algorithm. An SEM or TEM measurement takes a long time and requires additional handling of tip. Therefore AFM technique is widely used for tip geometry measurement. In order to use this procedure, the actual shape of the tip characterizer must be known with some certainty. If it is not practical to obtain the actual characterizer geometry, blind estimation of the tip shape is an alternative.

The tip reconstruction methods are discussed as follows. Based on [34], an AFM scanned image is a dilation of the real sample surface and the reflection of the probe tip surface. That is

$$i(x,y)=\mathop{\max}\limits_{(x^{\prime},y^{\prime})}[s(x-x^{\prime},y-y^{\prime})+p(x^{\prime},y^{\prime})]$$
(A.1)

where (x, y) and (x′, y′) are in plane coordinates, and i, s, p are the functions of the top surfaces of the scanned image, the real sample (tip characterizer), and reflected tip through the origin, respectively. Since p is the reflection of the tip, it relates to the function t, describing the tip surface, by

$$p(x,y)=-t(-x,-y)$$
(A.2)

In Eq. (A.1), if the sample surface (s) is known, then the tip shape can be obtained from the scanned image and the sample surface:

$$p_{r}(x,y)=\mathop{\min}\limits_{(x^{\prime},y^{\prime})}[i(x+x^{\prime},y+y^{\prime})-s(x^{\prime},y^{\prime})]$$
(A.3)

where p r is an upper bound on the true tip surface (P r ⫆ ⊇p).

Different tip characterizers with known geometry have been developed. Examples of the characterizers used are colloidal gold [35], polystyrene and glass sphere [36], and biomolecules [37].

In the case the tip characterizer surface (s) is unknown, the upper bound on the true tip surface can be determined by giving an initial value (p 0 ) and iteratively deriving the upper bound by [34]

$$p_{i+1}=\mathop{\min}\limits_{x^{\prime}\in D_I}\left\{{\mathop{\max}\limits_{d\in D_{p^{\prime}}}\left\{{\min\left[{i(x+x^{\prime}-d)+p_i(d)-i(x^{\prime}),p_i(x)}\right]}\right\}}\right\}$$
(A.4)

where D I and D p designate the domain of I and p′, respectively, and d is forbidden value.

In equation (A.4), the tip shape is expressed as the function of the measured image (I) and the tip surface itself (p). The sample surface is not involved in determining the tip shape. This is called “blind tip reconstruction” [34]. In order to get a desirable estimation of the tip shape using blind tip reconstruction method, the sample should contain sharp features and high relief so that all the points on the tip surface are in contact with the sample surface.

Tip characterizers based on the “blind tip reconstruction” principle have been developed. Spikes and columns [38] are examples using this principle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Z., Bhushan, B. Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol Lett 21, 1–16 (2006). https://doi.org/10.1007/s11249-005-9001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-9001-8

Keywords

Navigation