Skip to main content

Advertisement

Log in

High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

We have produced human alpha1-antitrypsin (A1AT), a major therapeutic protein, in genetically engineered tobacco plastids. Four different expression vectors have been evaluated which encode A1AT under the control of various 5′ and 3′ plastid expression elements. The use of heterologous promoter and terminator sequences derived from the corn and soybean plastid genomes leads to simpler and predictable recombinant genome patterns, avoiding unwanted recombination products between introduced and resident tobacco sequences. High level expression of unglycosylated A1AT, representing up to 2% of total soluble proteins, has been measured in leaves of transgenic tobacco lines. Some heterogeneity in the recombinant A1AT is detected after 2D protein separation, but the chloroplast-made protease inhibitors are fully active and bind to porcine pancreatic elastase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archibald AL, McClenaghan M, Hornsey V, Simons JP, Clark AJ (1990) High-level expression of biologically active human alpha-1 antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA 87(13):5178–5182. doi:10.1073/pnas.87.13.5178

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Timmis JN (1992) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor Appl Genet 85:229–238. doi:10.1007/BF00222864

    Article  CAS  Google Scholar 

  • Bally J, Paget E, Droux M, Job C, Job D, Dubald M (2008) Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol J 6(1):46–61

    PubMed  CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18(2):100–106. doi:10.1016/j.copbio.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brantly M (2002) α1-Antitrypsine: not just an antiprotease. Extending the half-life of a natural anti-inflammatory molecule by conjuguation with polyethylene glycol. Am J Respir Cell Mol Biol 27:652–654

    PubMed  CAS  Google Scholar 

  • Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 84:13–31

    PubMed  Google Scholar 

  • Brown WM (2006) rAAT (inhaled) Arriva/Hyland Immuno. Curr Opin Mol Ther 8(1):76–82

    PubMed  CAS  Google Scholar 

  • Cantin AM, Woods DE, Cloutier D, Dufour EK, Leduc R (2002) Polyethylene glycol conjugation at Cys232 prolongs the half life of α1 proteinase inhibitor. Am J Respir Cell Mol Biol 27:659–665

    PubMed  CAS  Google Scholar 

  • Courtney M, Buchwalder A, Tessier LH, Jaye M, Benavente A, Balland A et al (1984) High-level production of biologically active human α1-antitrypsin in Escherichia coli. Proc Natl Acad Sci USA 81:669–673. doi:10.1073/pnas.81.3.669

    Article  PubMed  CAS  Google Scholar 

  • Courtney M, Jallat S, Tessier LH, Benavente A, Crystal RG, Lecocq JP (1985) Synthesis in E. coli of alpha1-antitrypsin variants of therapeutic potential for emphysema and thrombosis. Nature 313(5998):149–151. doi:10.1038/313149a0

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2006) Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J 1(10):1071–1079. doi:10.1002/biot.200600145

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Cohill P, Kumar S, Dufourmantel N (2004) Chloroplast genetic engineering. In: Daniell H, Chase C (eds) In molecular biology and biotechnology of plant organelles. Springer, Verlag, pp 443–490

    Chapter  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19(1):71–74. doi:10.1038/83559

    Article  PubMed  Google Scholar 

  • Dementiev A, Dobo J, Gettins PGW (2006) Active site distortion is sufficient for proteinase inhibition by serpins. Structure of the covalent complex of α1-proteinase inhibitor with porcine pancreatic elastase. J Biol Chem 281(6):3452–3457. doi:10.1074/jbc.M510564200

    Article  PubMed  CAS  Google Scholar 

  • Dobo J, Gettins GW (2004) α1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition. J Biol Chem 279(10):9264–9269. doi:10.1074/jbc.M311731200

    Article  PubMed  CAS  Google Scholar 

  • Dubald M, Tissot G, Dufourmantel N, Goutorbe F (2008) The engineering of recombinant plastids in higher plants. In: Kumar A (ed) Recent advances in plant biotechnology. IK International Publishers, New Delhi, pp 36–59

    Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S et al (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668. doi:10.1007/s11103-005-7405-3

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Garçon F, Pelissier B, Dubald M (2006) Stability of soybean recombinant plastome over six generations. Transgenic Res 15(3):305–311. doi:10.1007/s11248-005-5262-0

    Article  PubMed  CAS  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C et al (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants overexpressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol J 5:118–133. doi:10.1111/j.1467-7652.2006.00226.x

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-SanMillan A, Mingeo-Castel AM, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79. doi:10.1046/j.1467-7652.2003.00008.x

    Article  CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328. doi:10.1007/BF00233358

    Article  CAS  Google Scholar 

  • Gianazza E (1995) Isoelectric focusing as a tool for the investigation of post-translational processing and chemical modifications of proteins. J Chromatogr A 705:67–87. doi:10.1016/0021-9673(94)01251-9

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. Q J Med 97(11):705–716

    CAS  Google Scholar 

  • Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23(11):559–565. doi:10.1016/j.tibtech.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Postel W, Weser J, Günther S, Strahler JR, Hanash SM et al (1987) Elimination of point streaking on silver stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8:122–124. doi:10.1002/elps.1150080207

    Article  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16(13):4041–4048. doi:10.1093/emboj/16.13.4041

    Article  PubMed  CAS  Google Scholar 

  • Harder A, Wildgruber R, Nawrocki A, Fey SJ, Larsen PM, Görg A (1999) Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20:826–829. doi :10.1002/(SICI)1522-2683(19990101)20:4/5<826::AID-ELPS826>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  • Hasannia S, Lofti AS, Mahboudi F, Rezaii A, Rahbarizadeh F, Lohsenifar A (2006) Elevated expression of human alpha-1 antitrypsin mediated by yeast intron in Pichia pastoris. Biotechnol Lett 19:1545–1550. doi:10.1007/s10529-006-9121-8

    Article  Google Scholar 

  • Heresi GA, Stoller JK (2008) Augmentation therapy in alpha-1 antitrypsin deficiency. Expert Opin Biol Ther 8(4):515–526. doi:10.1517/14712598.8.4.515

    Article  PubMed  CAS  Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH et al (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12(1):111–114. doi:10.1023/A:1022180315462

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Sutliff TD, Wu L, Nandi S, Benge K, Terashima M et al (2001) Expression and purification of functional human alpha-1-antitrypsin from cultured plant cells. Biotechnol Prog 17(1):126–133. doi:10.1021/bp0001516

    Article  PubMed  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 38:790–802. doi:10.1104/pp.105.062778

    Article  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M et al (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15(2):205–217. doi:10.1007/s11248-005-3997-2

    Article  PubMed  CAS  Google Scholar 

  • Kang HA, Nam SW, Kwon KS, Chung BH, Yu MH (1996) High-level secretion of human alpha1-antitrypsin from Saccharomyces cerevisae using inulinase signal sequence. J Biotechnol 48(1–2):15–24. doi:10.1016/0168-1656(96)01391-0

    Article  PubMed  CAS  Google Scholar 

  • Karnakhova E, Ophir Y, Golding B (2006) Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids 30(4):317–332. doi:10.1007/s00726-005-0324-4

    Article  Google Scholar 

  • Karnakhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B et al (2007) Expression of human α1-proteinase inhibitor in Aspergillus niger. Microb Cell Fact 6:34. doi:10.1186/1475-2859-6-34

    Article  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854. doi:10.1104/pp.104.045187

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56(2):203–216. doi:10.1007/s11103-004-2907-y

    Article  PubMed  CAS  Google Scholar 

  • Kwon KS, Song M, Yu MH (1995) Purification and characterization of alpha1-antitrypsin secreted by recombinant yeast Saccharomyces diastaticus. J Biotechnol 42(3):191–195. doi:10.1016/0168-1656(95)00079-6

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB et al (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission to their progeny. Mol Cells 21(3):401–410

    PubMed  CAS  Google Scholar 

  • Lelivelt CLC, McCabe MS, Newell CA, de Snoo CB, van Dun KMP, Birch-Machin I et al (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774. doi:10.1007/s11103-005-7704-8

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313. doi:10.1146/annurev.arplant.55.031903.141633

    Article  PubMed  CAS  Google Scholar 

  • McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona J, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high biomass tobacco variety Maryland Mammoth for production of HIV-1 p24 antigen. Plant Biotechnol J (in press)

  • Nguyen TT, Nugent GD, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Sci 168(1):1495–1500. doi:10.1016/j.plantsci.2005.01.023

    Article  CAS  Google Scholar 

  • Nugent JM, Joyce SM (2005) Producing human therapeutic proteins in plastids. Curr Pharm Des 11(19):2459–2470. doi:10.2174/1381612054367562

    Article  PubMed  CAS  Google Scholar 

  • Nugent GD, Ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP (2005) Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24(6):341–349. doi:10.1007/s00299-005-0930-3

    Article  PubMed  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H et al (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15(5):637–646. doi:10.1007/s11248-006-9009-3

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875. doi:10.1038/nbt0901-870

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sandoval C, Curtis H, Congote LF (2002) Enhanced proliferative effects of a baculovirus-produced fusion protein of insulin-like growth factor and α1-proteinase inhibitor and improved anti-elastase activity of the inhibitor with glutamate at position 351. Protein Eng 15:413–418

    Article  PubMed  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216. doi:10.1046/j.1365-313X.1999.00508.x

    Article  PubMed  CAS  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24. doi:10.1007/s002990050525

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacae. Transgenic Res 12:115–122. doi:10.1023/A:1022110402302

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90(3):913–917. doi:10.1073/pnas.90.3.913

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz PT, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530. doi:10.1073/pnas.87.21.8526

    Article  PubMed  CAS  Google Scholar 

  • Terashima M, Murai Y, Kawamura M, Nakanishi S, Stoltz T, Chen L et al (1999) Production of functional human alpha1-antitrypsin by plant cell culture. Appl Microbiol Biotechnol 52(4):516–523. doi:10.1007/s002530051554

    Article  PubMed  CAS  Google Scholar 

  • Tissot G, Canard H, Nadai M, Martone A, Botterman J, Dubald M (2008) Translocation of aprotinin, a therapeutic protease inhibitor, into the thylakoid lumen of genetically engineered tobacco chloroplasts. Plant Biotechnol J 6(3):309–320. doi:10.1111/j.1467-7652.2008.00321.x

    Article  PubMed  CAS  Google Scholar 

  • Wood AM, Stockley RA (2007) Alpha one antitrypsin deficiency: from gene to treatment. Respiration 74:481–492. doi:10.1159/000105536

    Article  PubMed  CAS  Google Scholar 

  • Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P et al (1991) High level expression of active human alpha1-antitrypsin in the milk of transgenic sheep. Biotechnology 9:830–834. doi:10.1038/nbt0991-830

    Article  PubMed  CAS  Google Scholar 

  • Ye GN, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N et al (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270. doi:10.1046/j.1365-313x.2001.00958.x

    Article  PubMed  CAS  Google Scholar 

  • Zbikowska HM, Soukhareva N, Behnam R, Lubon H, Hammond D, Soukharev S (2002) Uromodulin promoter directs high-level expression of biologically active human α1-antitrypsin into mouse urine. Biochem J 365:7–11. doi:10.1042/BJ20020643

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13(6):523–530. doi:10.1007/s11248-004-2374-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dubald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadai, M., Bally, J., Vitel, M. et al. High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. Transgenic Res 18, 173–183 (2009). https://doi.org/10.1007/s11248-008-9209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9209-0

Keywords

Navigation