Skip to main content
Log in

Cytokinin vectors mediate marker-free and backbone-free plant transformation

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing “cytokinin” vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breeding 16:247–260

    Article  CAS  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breeding 15:305–327

    Article  Google Scholar 

  • Assad-García N, Ochoa-Alejo N, García-Hernández E, Herrera-Estrella L (1992) Agrobacterium-mediated transformation of tomatillo (Physalis ixocarpa) and tissue specific and developmental expression of the CaMV 35S promoter in transgenic tomatillo plants. Plant Cell Rep 11:558–562

    Article  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Peña L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Barry GF, Kishore GM, Krohn BM (1998) Isoamylase gene, compositions containing it, and methods of using isoamylases. US Patent 5750876

  • Bent AF (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103

    PubMed  CAS  Google Scholar 

  • Bukovinszki A, Diveki Z, Csanyi M, Palkovics L, Balazs E (2007) Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a ‘shooter mutant’ A. tumefaciens. Plant Cell Rep 26:459–465

    Article  PubMed  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    PubMed  CAS  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breeding 7:25–33

    Article  CAS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, der Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30:115–122

    Article  PubMed  CAS  Google Scholar 

  • Garbarino JE, Belknap WR (1993) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  Google Scholar 

  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Hanson B, Engler D, Moy Y, Newman B, Ralston E, Gutterson N (1999) A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J 19:727–734

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S (2006) Integrating hormone signaling and patterning mechanisms in plant development. Curr Opin Plant Biol 9:28–34

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773

    Article  PubMed  CAS  Google Scholar 

  • Kobori S, Masuda Y, Horii M, Marubashi W (2007) High levels of the cytokinin BAP suppress programmed cell death in hybrid tobacco cells (Nicotiana suaveolens × N. tabacum) expressing hybrid lethality. Plant Biotechnol 24:375–381

    CAS  Google Scholar 

  • Kondrak M, van der Meer IM, Banfalvi Z (2006) Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 15:729–737

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395

    Article  PubMed  CAS  Google Scholar 

  • Molinier J, Thomas C, Brignou M, Hahne G (2002) Transient expression of ipt gene enhances regeneration and transformation rates of sunflower shoot apices (Helianthus annuus L.). Plant Cell Rep 21:251–256

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Myskja B (2006) The moral difference between intragenic and transgenic modification of plants. J Agric Env Ethics 19:225–238

    Article  Google Scholar 

  • Nielsen KM (2003) Transgenic organisms––time for conceptual diversification? Nat Biotechnol 21:227–228

    Article  PubMed  CAS  Google Scholar 

  • Popelka JC, Xu J, Altpeter F (2003) Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res 12:587–596

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Organ Cult 74:123–134

    Article  CAS  Google Scholar 

  • Que Q, Jorgensen RA (1998) Homology-based control of gene expression patterns in transgenic petunia flowers. Dev Genet 22:100–109

    Article  PubMed  CAS  Google Scholar 

  • Rios G, Lossow A, Hertel B, Breuer F, Schaefer S, Broich M, Kleinow T, Jasik J, Winter J, Ferrando A, Farras R, Panicot M, Henriques R, Mariaux JB, Oberschall A, Molnar G, Berendzen K, Shukla V, Lafos M, Koncz Z, Redei GP, Schell J, Koncz C (2002) Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J 32:243–253

    Article  PubMed  CAS  Google Scholar 

  • Romano A, Raemakers K, Bernardi J, Visser R, Mooibroek H (2003) Transgene organisation in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettes. Transgenic Res 12:461–473

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM (2004) All-native DNA transformation: a new approach to plant genetic engineering. Trends Plant Sci 9:457–464

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Simpson J, Montes-Hernandez S, Gutierrez-Campos R, Assad-Garcia N, Herrera-Estrella L (1995) Genetic transformation in Physalis species (Tomatillo). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering VI. Biotechnology in agriculture and forestry, vol. 34. Springer-Verlag, Berlin Heidelberg, pp 228–239

    Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Rommens CM (2007) Transposition-based plant transformation. Plant Physiol 143:570–578

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141:1508–1518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Scott Simplot, Bill Whitacre, and Dr. Kathy Swords for fruitful discussions and continued support. Dr. Jingsong Ye, Dr. Oleg Bougri, Kristi Fessenden, and Jeffery Hein are acknowledged for excellent technical contributions and Alexey Kromin for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caius M. Rommens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richael, C.M., Kalyaeva, M., Chretien, R.C. et al. Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Res 17, 905–917 (2008). https://doi.org/10.1007/s11248-008-9175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-008-9175-6

Keywords

Navigation