Skip to main content
Log in

Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Genetic transformation of wheat, using biolistics or Agrobacterium, underpins a range of specific research methods for identifying genes and studying their function in planta. Transgenic approaches to study and modify traits in durum wheat have lagged behind those for bread wheat. Here we report the use of Agrobacterium strain AGL1, with additional vir genes housed in a helper plasmid, to transform and regenerate the durum wheat variety Ofanto. The use of the basic pSoup helper plasmid with no additional vir genes failed to generate transformants, whereas the presence of either virG542 or the 15 kb Komari fragment containing virB, virC and virG542 produced transformation efficiencies of between 0.6 and 9.7%. Of the 42 transgenic plants made, all but one (which set very few seeds) appeared morphologically normal and produced between 100 and 300 viable seeds. The transgene copy number and the segregation ratios were found to be very similar to those previously reported for bread wheat. We believe that this is the first report describing successful genetic transformation of tetraploid durum wheat (Triticum turgidum L. var. durum) mediated by Agrobacterium tumefaciens using immature embryos as the explant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of gusA in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Barcelo P, Rasco-Gaunt S, Thorpe C, Lazzeri PA (2001) Transformation and gene expression. Adv Bot Res 34:59–126

    Article  CAS  Google Scholar 

  • Bell P (2003) Manipulation of lipoxygenase activity in durum wheat for the improvement of pasta colour. Ph.D. thesis, Department of Biological Sciences & CPI Division, Bristol University & Rothamsted Research, p 205

  • Bommineni VR, Jauhar PP, Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Hered 88:475–481

    Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Hu TC, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Christou P (1992) Genetic-transformation of crop plants using microprojectile bombardment. Plant J 2:275–281

    Article  CAS  Google Scholar 

  • Das A, Stachel S, Ebert P, Allenza P, Montoya A, Nester E (1986) Promoters of Agrobacterium-tumefaciens Ti-plasmid virulence genes. Nucleic Acids Res 14:1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Biotechnology 8:736–740

    Article  CAS  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    Article  CAS  Google Scholar 

  • Haliloglu K, Baenziger PS (2003) Agrobacterium tumefaciens-mediated wheat transformation. Cereal Res Commun 31:9–16

    CAS  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Article  PubMed  CAS  Google Scholar 

  • He GY, Rooke L, Steele S, Bekes F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA (1999) Transformation of pasta wheat (Triticum turgidum L-var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol Breed 5:377–386

    Article  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32:157–179

    CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jin SG, Prusti RK, Roitsch T, Ankenbauer RG, Nester EW (1990) Phosphorylation of the virg protein of Agrobacterium tumefaciens by the autophosphorylated vira protein—essential role in biological-activity of virg. J Bacteriol 172:4945–4950

    PubMed  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    PubMed  CAS  Google Scholar 

  • Komari T (1990) Transformation of cultured-cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9:303–306

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Liu CN, Li XQ, Gelvin SB (1992) Multiple copies of virg enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol 20:1071–1087

    Article  PubMed  CAS  Google Scholar 

  • Patnaik D, Vishnudasan D, Khurana P (2006) Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Curr Sci 91:307–317

    CAS  Google Scholar 

  • Pellegrineschi A, Brito RM, Velazquez L, Noguera LM, Pfeiffer W, McLean S, Hoisington D (2002a) The effect of pretreatment with mild heat and drought stresses on the explant and biolistic transformation frequency of three durum wheat cultivars. Plant Cell Rep 20:955–960

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002b) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  PubMed  CAS  Google Scholar 

  • Rasco-Gaunt S, Riley A, Lazzeri P, Barcelo P (1999) A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol Breed 5:255–262

    Article  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    Article  CAS  Google Scholar 

  • Sawada H, Ieki H, Matsuda I (1995) Pcr detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:828–831

    PubMed  CAS  Google Scholar 

  • Shewry PR, Jones HD (2005) Transgenic wheat: where do we stand after the first 12 years?. Ann App Biol 147:1–14

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Barcelo P, Lazzeri P (1995) Molecular and cellular techniques in wheat improvement. In: DiFonzo N, Kaan F, Nachit M (eds) Proceedings of the conference on durum wheat quality in the Mediterranean region. Published by Centre International de Hautes Etudes Agronomiques Méditerranéennes, Zaragona, Spain, pp 227–240

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276

    Article  CAS  Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  PubMed  CAS  Google Scholar 

  • Stacey J, Isaac P (1994) Isolation of DNA from plants, in methods. In: Isaac P (ed) Molecular biology—protocols for nucleic acid analysis by nonradioactive probes, vol 28. Humana Press Inc., Totowa, pp 9–15

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene-transfer into protoplasts. Biotechnology 6:1072–1074

    Article  CAS  Google Scholar 

  • van der Fits L, Deakin EA, Hoge JHC, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  PubMed  Google Scholar 

  • Vishnudasan D, Tripathi MN, Rao U, Khurana P (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res 14:665–675

    Article  PubMed  CAS  Google Scholar 

  • Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Wiley PR (2005) The use of genetic transformation to determine the molecular basis for grain texture in wheat. Ph.D. thesis, Department of Biological Sciences & CPI Division, Bristol University & Rothamsted Research, p 218

  • Wiley PR, Tosi P, Evrard A, Lovegrove A, Jones HD, Shewry PR (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol 64:125–136

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Wu H, Sparks CA, Jones HD (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208

    Article  Google Scholar 

  • Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7:379–384

    CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK. HW and AD were funded by the Defra UK through BRACT project. Authors are grateful to have received technical advice from Dr M. Wilkinson, C. Sparks and J. West.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw D. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Doherty, A. & Jones, H.D. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17, 425–436 (2008). https://doi.org/10.1007/s11248-007-9116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9116-9

Keywords

Navigation