Skip to main content
Log in

Recent Progress in Electrochemical Synthesis and Conversion of Nitrates in Aqueous Electrolyte

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nitrate, as an important nitrogen source, plays a crucial role in the fields of energy, chemicals, and the environment. Electrocatalytic nitrogen conversion, powered by renewable energy sources, is a viable and promising strategy for the synthesis and conversion of nitrate. In this work, electrocatalytic synthesis and conversion of nitrates associated with five reactions: ammonia oxidation reaction (NH3OR), nitrogen oxidation reaction (N2OR), NO oxidation reaction (NOOR), nitrate reduction reaction (NO3RR), and the electrochemical C-N coupling of CO2 and NO3 (C–N coupling) were reviewed. At present, it is found that most of these reaction processes still suffer from low Faradaic efficiency and product yield. The underlying mechanisms, key steps, and rational catalyst design for these nitrogen electrochemical reactions were summarized. This review aims to provide insights into the fundamentals in the relevant reactions, the development of efficient catalysts, and the advances in the progress of artificial nitrogen cycling processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

(Copyright 2022, Wiley)

Fig. 3
Fig. 4
Fig. 5

(Copyright 2021, Wiley). c Schematic diagram of the NO oxidation mediated by the chlorine cycle. d Nitrate and nitrite yield of the NO oxidation mediated by the chlorine cycle [66]. (Copyright 2022, RSC)

Fig. 6
Fig. 7

(Copyright 2019, ACS). b The volcano plot of theoretical activity of NO3RR to NH3 [19]

Fig. 8

(Copyright 2020, ACS). Cu-supported Rh electrocatalysts. c Schematic diagram of the NO3RR process, d reaction coordinate for various intermediates, e current densities and f faradaic efficiency of NO3RR to NH3 [85]. (Copyright 2022, Wiley)

Fig. 9
Fig. 10

(Copyright 2022, ACS). For Fe–Ni diatomic catalyst, c schematic diagram of the formation of *NHCO, and d transition-state energy barrier of first C–N coupling for *NHCO formation [119]

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rosca V, Duca M, De Groot MT, Koper MTM (2009) Nitrogen cycle electrocatalysis. Chem Rev 109(6):2209–2244

    Article  CAS  PubMed  Google Scholar 

  2. Medford AJ, Hatzell MC (2017) Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal 7(4):2624–2643

    Article  CAS  Google Scholar 

  3. Liu Y, Cheng M, He Z, Gu B, Xiao C, Zhou T, Guo Z, Liu J, He H, Ye B, Pan B, Xie Y (2019) Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew Chem Int Ed 58(3):731–735

    Article  CAS  Google Scholar 

  4. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR (2018) Beyond fossil fuel-driven nitrogen transformations. Science 360(6391):eaar6611

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA (2018) Greening ammonia toward the solar ammonia refinery. Joule 2(6):1055–1074

    Article  CAS  Google Scholar 

  6. Trenerry MJ, Wallen CM, Brown TR, Park SV, Berry JF (2021) Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat Chem 13(12):1221–1227

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Wang H, Zhou L, Li Q, Yang X, Wang Y, Zhang M, Wu Z (2023) Efficient and highly selective direct electrochemical oxidation of ammonia to dinitrogen facilitated by NiCu diatomic site catalysts. Appl Catal B 328:12254

    Article  Google Scholar 

  8. Wang D, He N, Xiao L, Dong F, Chen W, Zhou Y, Chen C, Wang S (2021) Coupling electrocatalytic nitric oxide oxidation over carbon cloth with hydrogen evolution reaction for nitrate synthesis. Angew Chem Int Ed 60(46):24605–24611

    Article  CAS  Google Scholar 

  9. Chang Y, Chen M, Fu Z, Lu R, Gao Y, Chen F, Li H, Rooij F, Lee Y, Wang Y, Zhou G (2023) Building porphyrin-based MOFs on MXenes for ppb-level NO sensing. J Mater Chem A 11(13):6966–6977

    Article  CAS  Google Scholar 

  10. Gao Y, Wang J, Feng Y, Cao N, Li H, de Rooij NF, Umar A, French PJ, Wang Y, Zhou G (2022) Carbon-iron electron transport channels in porphyrin-graphene complex for ppb-level room temperature NO gas sensing. Small 18(11):2103259

    Article  CAS  Google Scholar 

  11. Wang Y, Li T, Yu Y, Zhang B (2022) Electrochemical synthesis of nitric acid from nitrogen oxidation. Angew Chem Int Ed 134(12):e202115409

    Article  Google Scholar 

  12. Liang J, Liu Q, Alshehri AA, Sun X (2022) Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res 1(2):9120010

    Google Scholar 

  13. Guo Y, Zhang S, Zhang R, Wang D, Zhu D, Wang X, Xiao D, Li N, Zhao Y, Huang Z, Xu W, Chen S, Song L, Fan J, Chen Q, Zhi C (2022) Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets. ACS Nano 16(1):655–663

    Article  CAS  PubMed  Google Scholar 

  14. Kuang M, Wang Y, Fang W, Tan H, Chen M, Yao J, Liu C, Xu J, Zhou K, Yan Q (2020) Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv Mater 32(26):2002189

    Article  CAS  Google Scholar 

  15. van Langevelde PH, Katsounaros I, Koper MTM (2021) Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5(2):290–294

    Article  Google Scholar 

  16. Chen G-F, Yuan Y, Jiang H, Ren S-Y, Ding L-X, Ma L, Wu T, Lu J, Wang H (2020) Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat Energy 5(8):605–613

    Article  CAS  Google Scholar 

  17. Deng X, Yang Y, Wang L, Fu XZ, Luo JL (2021) Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm−2. Adv Sci 8(7):2004523

    Article  CAS  Google Scholar 

  18. Bu Y, Wang C, Zhang W, Yang X, Ding J, Gao G (2023) Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew Chem Int Ed 62(24):e202217337

    Article  CAS  Google Scholar 

  19. Gao Q, Pillai H, Huang Y, Liu S, Mu Q, Han X, Yan Z, Zhou H, He Q, Xin H, Zhu H (2022) Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat Commun 13(1):2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan J, Hu L, Huang J, Chen Y, Qiao S, Xie H (2023) Photo/electrochemical urea synthesis via CO2 coupling with nitrogenous small molecules: status and challenges for the development of mechanism and catalysts. Appl Catal B 339:123146

    Article  CAS  Google Scholar 

  21. Liu S, Wang M, Cheng Q, He Y, Ni J, Liu J, Yan C, Qian T (2022) Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano 16(11):17911–17930

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Zhang Y, Kuruvinashetti K, Kornienko N (2022) Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem 6(5):303–319

    Article  CAS  PubMed  Google Scholar 

  23. Adli NM, Zhang H, Mukherjee S, Wu G (2018) Review-ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J Electrochem Soc 165(15):J3130–J3147

    Article  CAS  Google Scholar 

  24. Zhong C, Hu W, Cheng Y (2013) Recent advances in electrocatalysts for electro-oxidation of ammonia. J Mater Chem A 1(10):3216–3238

    Article  CAS  Google Scholar 

  25. Tian Y, Mao Z, Wang L, Liang J (2023) Green chemistry: advanced electrocatalysts and system design for ammonia oxidation. Small Struct 4(6):2200266

    Article  CAS  Google Scholar 

  26. Jiang X, Ying D, Liu X, Liu M, Zhou S, Guo C, Zhao G, Wang Y, Jia J (2020) Identification of the role of Cu site in Ni-Cu hydroxide for robust and high selective electrochemical ammonia oxidation to nitrite. Electrochim Acta 345:136157

    Article  CAS  Google Scholar 

  27. Endo K, Katayama Y, Miura T (2005) A rotating disk electrode study on the ammonia oxidation. Electrochim Acta 50(11):2181–2185

    Article  CAS  Google Scholar 

  28. Rosca V, Beltramo GL, Koper MTM (2004) Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study. J Electroanal Chem 566(1):53–62

    Article  CAS  Google Scholar 

  29. Medvedev JJ, Tobolovskaya Y, Medvedeva XV, Tatarchuk SW, Li F, Klinkova A (2022) Pathways of ammonia electrooxidation on nickel hydroxide anodes and an alternative route towards recycled fertilizers. Green Chem 24(4):1578–1589

    Article  CAS  Google Scholar 

  30. Klinman JP (1996) Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Soc Rev 96(7):2541–2561

    Article  CAS  Google Scholar 

  31. Zahn J, Arciero DM, Hooper AB, DiSpirito AA (1996) Evidence for an iron center in the ammonia monooxygenase from nitrosomonas europaea. FEBS Lett 397(1):35–38

    Article  CAS  PubMed  Google Scholar 

  32. Herron JA, Ferrin P, Mavrikakis M (2015) Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J Phys Chem C 119(26):14692–14701

    Article  CAS  Google Scholar 

  33. Johnston S, Kemp L, Turay B, Simonov AN, Suryanto BHR, MacFarlane DR (2021) Copper-catalyzed electrosynthesis of nitrite and nitrate from ammonia: tuning the selectivity via an interplay between homogeneous and heterogeneous catalysis. ChemSusChem 14(21):4793–4801

    Article  CAS  PubMed  Google Scholar 

  34. Liu HY, Lant HMC, Troiano JL, Hu G, Mercado B, Crabtree R, Brudvig G (2022) Electrocatalytic, homogeneous ammonia oxidation in water to nitrate and nitrite with a copper complex. J Am Chem Soc 144(19):8449–8453

    Article  CAS  PubMed  Google Scholar 

  35. Johnston S, Cohen S, Nguyen CK, Dinh KN, Nguyen TD, Giddey S, Munnings C, Simonov AN, MacFarlane DR (2022) A survey of catalytic materials for ammonia electrooxidation to nitrite and nitrate. ChemSusChem 15(20):e202200614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Yu Y, Jia R, Zhang C, Zhang B (2019) Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci Rev 6(4):730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saji SE, Lu H, Lu Z, Carroll A, Yin Z (2021) An experimentally verified LC-MS protocol toward an economical, reliable, and quantitative isotopic analysis in nitrogen reduction reactions. Small Methods 5(5):e2000694

    Article  PubMed  Google Scholar 

  38. Anand M, Abraham CS, Norskov JK (2021) Electrochemical oxidation of molecular nitrogen to nitric acid-towards a molecular level understanding of the challenges. Chem Sci 12(18):6442–6448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang W, Du C, Kuang M, Chen M, Huang W, Ren H, Xu J, Feldhoff A, Yan Q (2020) Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. ChemComm 56(43):5779–5782

    CAS  Google Scholar 

  40. Dai C, Sun Y, Chen G, Fisher AC, Xu Z (2020) Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew Chem Int Ed 59(24):9418–9422

    Article  CAS  Google Scholar 

  41. Li T, Han S, Cheng C, Wang Y, Du X, Yu Y, Zhang B (2022) Sulfate-enabled nitrate synthesis from nitrogen electrooxidation on a rhodium electrocatalyst. Angew Chem Int Ed 61(26):e202204541

    Article  CAS  Google Scholar 

  42. Zhang L, Cong M, Ding X, Jin Y, Xu F, Wang Y, Chen L, Zhang L (2020) A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew Chem Int Ed 59(27):10888–10893

    Article  CAS  Google Scholar 

  43. Nie Z, Zhang L, Ding X, Cong M, Xu F, Ma L, Guo M, Li M, Zhang L (2022) Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv Mater 34(14):e2108180

    Article  PubMed  Google Scholar 

  44. Zhang Y, Du F, Wang R, Ling X, Wang X, Shen Q, Xiong Y, Li T, Zhou Y, Zou Z (2021) Electrocatalytic fixation of N2 into NO3: electron transfer between oxygen vacancies and loaded Au in Nb2O5−x nanobelts to promote ambient nitrogen oxidation. J Mater Chem A 9(32):17442–17450

    Article  CAS  Google Scholar 

  45. Li T, Han S, Wang C, Huang Y, Wang Y, Yu Y, Zhang B (2021) Ru-doped Pd nanoparticles for nitrogen electrooxidation to nitrate. ACS Catal 11(22):14032–14037

    Article  CAS  Google Scholar 

  46. Han S, Wang C, Wang Y, Yu Y, Zhang B (2021) Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets. Angew Chem Int Ed 60(9):4474–4478

    Article  CAS  Google Scholar 

  47. Jia HP, Quadrelli EA (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43(2):547–564

    Article  CAS  PubMed  Google Scholar 

  48. Ling C, Niu X, Li Q, Du A, Wang J (2018) Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc 140(43):14161–14168

    Article  CAS  PubMed  Google Scholar 

  49. Lv F, Zhao S, Guo R, He J, Peng X, Bao H, Fu J, Han L, Qi G, Luo J, Tang X, Liu X (2019) Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 61:420–427

    Article  Google Scholar 

  50. Chen J, Wang H, Wang Z, Mao S, Yu J, Wang Y, Wang Y (2019) Redispersion of Mo-based catalysts and the rational design of super small-sized metallic Mo species. ACS Catal 9(6):5302–5307

    Article  CAS  Google Scholar 

  51. Wan H, Bagger A, Rossmeisl J (2022) Limitations of electrochemical nitrogen oxidation toward nitrate. J Phys Chem Lett 13(38):8928–8934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caro CA, Zagal JH, Bedioui F (2003) Electrocatalytic activity of substituted metallophthalocyanines adsorbed on vitreous carbon electrode for nitric oxide oxidation. J Electrochem Soc 150(2):E95–E103

    Article  CAS  Google Scholar 

  53. Frati F, Hunault M, De Groot FMF (2020) Oxygen K-edge X-ray absorption spectra. Chem Rev 120(9):4056–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y (2017) Perovskites in catalysis and electrocatalysis. Science 358(6364):751–756

    Article  CAS  PubMed  Google Scholar 

  55. De Vooys ACA, Beltramo GL, Van Riet B, Van Veen J, Koper MTM (2004) Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochim Acta 49(8):1307–1314

    Article  Google Scholar 

  56. Ye S, Kita H (1993) Adsorbed HNO2/NO redox couple at Pt(111) single-crystal electrode. J Electroanal Chem 346:489–495

    Article  CAS  Google Scholar 

  57. Beltramo GL, Koper MTN (2003) Nitric oxide reduction and oxidation on stepped Pt[n(111)×(111)] electrodes. Langmuir 19(21):8907–8915

    Article  CAS  Google Scholar 

  58. Dutta D, Landolt D (1972) Electrochemical behavior of nitric oxide in 4M H2SO4 on Platinum. J Electrochem Soc 119:1320

    Article  CAS  Google Scholar 

  59. Piela B, Wrona PK (2002) Oxidation of nitrites on solid electrodes I. Determination of the reaction mechanism on the pure electrode surface. J Electrochem Soc 149(2):E55–E63

    Article  CAS  Google Scholar 

  60. Piela B, Wrona PK (2002) Oxidation of nitrite on solid electrodes: II. Determination of the reaction mechanism on surfaces covered by an oxide layer. J Electrochem Soc 149(10):E357–E366

    Article  CAS  Google Scholar 

  61. Wang W, McCool G, Kapur N, Yuan G, Shan B, Nguyen M, Graham UM, Davis BH, Jacobs G, Cho K, Hao X (2012) Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd)Mn2O5 for NO oxidation in diesel exhaust. Science 337(6096):832–835

    Article  CAS  PubMed  Google Scholar 

  62. Kim CH, Qi G, Dahlberg K, Li W (2010) Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973):1624–1627

    Article  CAS  PubMed  Google Scholar 

  63. Ma L, Zhang W, Wang Y-G, Chen X, Yu W, Sun K, Sun H, Li J, Schwank JW (2020) Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Appl Catal B 267:118371

    Article  CAS  Google Scholar 

  64. Schmitz P, Kudla R, Drews A, Chen A, Lowema C, McCabe R, Schneider W, Goralskijr C (2006) NO oxidation over supported Pt: impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Appl Catal B 67(3–4):246–256

    Article  CAS  Google Scholar 

  65. Zhou M, Jiang Y, Wang G, Wu W, Chen W, Yu P, Lin Y, Mao J, Mao L (2020) Single-atom Ni-N4 provides a robust cellular NO sensor. Nat Commun 11(1):3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liang J, Zhang L, He X, Wang Y, Luo Y, Zheng D, Sun S, Cai Z, Zhang J, Ma K, Zheng Y, Sun X, Tang C (2023) Redox mediators promote electrochemical oxidation of nitric oxide toward ambient nitrate synthesis. J Mater Chem A 11(3):1098–1107

    Article  CAS  Google Scholar 

  67. Zhang L, Liang J, He X, Yang Q, Luo Y, Zheng D, Sun S, Zhang J, Yan H, Ying B, Guo X, Sun X (2023) Integrating RuO2@TiO2 catalyzed electrochemical chlorine evolution with a NO oxidation reaction for nitrate synthesis. Inorg Chem Front 10(7):2100–2106

    Article  CAS  Google Scholar 

  68. Li S, Shang H, Tao Y, Li P, Pan H, Wang Q, Zhang S, Jia H, Zhang H, Cao J, Zhang B, Zhang R, Li G, Zhang Y, Zhang D, Li H (2023) Hydroxyl radical-mediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angew Chem Int Ed 62(28):e202305538

    Article  CAS  Google Scholar 

  69. Wu A, Lv J, Xuan X, Zhang J, Cao A, Wang M, Wu X, Liu Q, Zhong Y, Sun W, Ye Q, Peng Y, Lin X, Qi Z, Zhu S, Huang Q, Li X, Wu H, Yan J (2023) Electrocatalytic disproportionation of nitric oxide toward efficient nitrogen fixation. Adv Energy Mater 13(14):2204231

    Article  CAS  Google Scholar 

  70. Lan R, Irvine JTS, Tao S (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrog Energy 37(2):1482–1494

    Article  CAS  Google Scholar 

  71. Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2006) Towards an ammonia-mediated hydrogen economy? Catal Today 111(1–2):140–144

    Article  CAS  Google Scholar 

  72. Van Breemen N (2002) Natural organic tendency. Nature 415(6870):381–382

    Article  PubMed  Google Scholar 

  73. Zhang X, Wang Y, Liu C, Yu Y, Lu S, Zhang B (2021) Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem Eng J 403:126269

    Article  CAS  Google Scholar 

  74. De Vooys ACA, Van Santen RA, VanVeen JAR (2000) Electrocatalytic reduction of NO3- on palladiumr/copper electrodes. J Mol Catal A Chem 154(1–2):203–215

    Article  Google Scholar 

  75. Dima GE, De Vooys ACA, Koper MTM (2003) Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J Electroanal Chem 554:15–23

    Article  Google Scholar 

  76. Yang J, Duca M, Schouten KJP, Koper MTM (2011) Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution. J Electroanal Chem 662(1):87–92

    Article  CAS  Google Scholar 

  77. De Vooys ACA, Koper MTM, Van Santen RA, Van Veen JAR (2001) Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes. J Catal 202(2):387–394

    Article  Google Scholar 

  78. Long J, Guo C, Fu X, Jing H, Qin G, Li H, Xiao J (2021) Unveiling potential dependence in NO electroreduction to ammonia. J Phys Chem Lett 12(29):6988–6995

    Article  CAS  PubMed  Google Scholar 

  79. Russell AE (2008) Electrocatalysis: theory and experiment at the interface. Phys Chem Chem Phys 10(25):3607–3608

    Article  CAS  PubMed  Google Scholar 

  80. Long J, Chen S, Zhang Y, Guo C, Fu X, Deng D, Xiao J (2020) Direct electrochemical ammonia synthesis from nitric oxide. Angew Chem Int Ed 59(24):9711–9718

    Article  CAS  Google Scholar 

  81. Gao W, Sun J, Zhao G (2023) Pd clusters loaded with multivalent Cu foam for superior electrochemical nitrate reduction and selective N≡N Bond Formation. Small. https://doi.org/10.1002/smll.202310597

    Article  PubMed  Google Scholar 

  82. De Chialvo MRG, Chialvo AC (1998) Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes. Electrochim Acta 44(5):841–851

    Article  Google Scholar 

  83. Gao J, Jiang B, Ni C, Qi Y, Zhang Y, Oturan N, Oturan M (2019) Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism. Appl Catal B 254:391–402

    Article  CAS  Google Scholar 

  84. Shin H, Jung S, Bae S, Lee W, Kim H (2014) Nitrite reduction mechanism on a Pd surface. Environ Sci Technol 48(21):12768–12774

    Article  CAS  PubMed  Google Scholar 

  85. Liu H, Lang X, Zhu C, Timoshenko J, Ruscher M, Bai L, Guijarro N, Yin H, Peng Y, Li J, Liu Z, Wang W, Cuenya B, Luo J (2022) Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew Chem Int Ed 61(23):e202202556

    Article  CAS  Google Scholar 

  86. Wang Y, Zhou W, Jia R, Yu Y, Zhang B (2020) Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 59(13):5350–5354

    Article  CAS  Google Scholar 

  87. Zhang S, Wu J, Zheng M, Jin X, Shen Z, Li Z, Wang Y, Wang Q, Wang X, Wei H, Zhang J, Wang P, Zhang S, Yu L, Dong L, Zhu Q, Zhang H, Lu J (2023) Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat Commun 14(1):3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu J-X, Richards D, Singh N, Goldsmith BR (2019) Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal 9(8):7052–7064

    Article  CAS  Google Scholar 

  89. Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam D, Tan C, Ding Y, Wu J, Lum Y, Dinh C, Sinton D, Zheng G, Sargent E (2020) Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J Am Chem Soc 142(12):5702–5708

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Chen X, Wang W, Yin L, Crittenden JC (2022) Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B 310:121346

    Article  CAS  Google Scholar 

  91. Zhou Y, Duan R, Li H, Zhao M, Ding C, Li C (2023) Boosting electrocatalytic nitrate reduction to ammonia via promoting water dissociation. ACS Catal 13(16):10846–10854

    Article  CAS  Google Scholar 

  92. Ji X, Sun K, Liu Z, Liu X, Dong W, Zuo X, Shao R, Tao J (2023) Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nanomicro Lett 15(1):110

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gong Z, Xiang X, Zhong W, Jia C, Chen P, Zhang N, Zhao S, Liu W, Chen Y, Lin Z (2023) Modulating metal-nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew Chem Int Ed Engl 135(38):e202308775

    Article  Google Scholar 

  94. Fang J, Zheng Q, Lou Y, Zhao K, Hu S, Li G, Akdim O, Huang X, Sun S (2022) Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat Commun 13(1):7899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. He W, Zhang J, Dieckhofer S, Varhade S, Brix AC, Lielpetere A, Seisel S, Junqueira JRC, Schuhmann W (2022) Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat Commun 13(1):1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu Z, Shih Y, Rahardjo SSP, Huang C (2023) Characteristics of copper and tin-based rhodium bimetallic electrodes for highly selective ammonia yield in electrochemical denitrification. ACS Sustain Chem Eng 11(30):11321–11332

    Article  CAS  Google Scholar 

  97. Chen F, Wu Z, Gupta S, Rivera DJ, Lambeets SV, Pecaut S, Kim JYT, Zhu P, Finfrock YZ, Meira DM, King G, Gao G, Xu W, Cullen DA, Zhou H, Han Y, Perea D, Muhich C, Wang H (2022) Efficient conversion of low-concentration nitrate sources into ammonia on a ru-dispersed Cu nanowire electrocatalyst. Nat Nanotechnol 17(7):759–767

    Article  CAS  PubMed  Google Scholar 

  98. Du C, Lu S, Wang J, Wang X, Wang M, Fruehwald HM, Wang L, Zhang B, Guo T, Mills JP, Wei W, Chen Z, Teng Y, Zhang J, Sun C, Zhou H, Smith RDL, Kendall B, Henkelman G, Wu Y (2023) Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis. ACS Catal 13(16):10560–10569

    Article  CAS  Google Scholar 

  99. Wu L, Feng J, Zhang L, Jia S, Song X, Zhu Q, Kang X, Xing X, Sun X, Han B (2023) Boosting electrocatalytic nitrate-to-ammonia via tuning of N-intermediate adsorption on a Zn-Cu catalyst. Angew Chem Int Ed 62(43):e202307952

    Article  CAS  Google Scholar 

  100. Yin D, Chen D, Zhang Y, Wang W, Quan Q, Wang W, Meng Y, Lai Z, Yang Z, Yip S, Wong C, Bu X, Wang X, Ho JC (2023) Synergistic active phases of transition metal oxide heterostructures for highly efficient ammonia electrosynthesis. Adv Funct Mater 33(50):2303803

    Article  CAS  Google Scholar 

  101. Wu R, Yan T, Zhang K, Wang Z, Duan H, Yi Q, Cheng D, Zhang D (2023) Selective tandem electroreduction of nitrate to nitrogen via copper–cobalt based bimetallic hollow nanobox catalysts. Environ Sci Nano 10(9):2332–2342

    Article  CAS  Google Scholar 

  102. Gong Z, Xiang X, Zhong W, Jia C, Chen P, Zhang N, Zhao S, Liu W, Chen Y, Lin Z (2023) Modulating metal-nitrogen coupling in anti-perovskite nitride via cation doping for efficient reduction of nitrate to ammonia. Angew Chem Int Ed 62(38):e202308775

    Article  CAS  Google Scholar 

  103. Lv C, Lee C, Zhong L, Liu H, Liu J, Yang L, Yan C, Yu W, Hng HH, Qi Z, Song L, Li S, Loh KP, Yan Q, Yu G (2022) A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 16(5):8213–8222

    Article  CAS  PubMed  Google Scholar 

  104. Li D, Zhao Y, Miao Y, Zhou C, Zhang LP, Wu LZ, Zhang T (2022) Accelerating electron-transfer dynamics by TiO2-immobilized reversible single-atom Copper for enhanced artificial photosynthesis of urea. Adv Mater 34(51):2207793

    Article  CAS  Google Scholar 

  105. Lv X, Liu Q, Yang H, Wang J, Wu X, Li X, Qi Z, Yan J, Wu A, Cheng T, Wu HB (2023) Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction. Adv Funct Mater 33(32):2301334

    Article  CAS  Google Scholar 

  106. Shibata M, Yoshida K, Furuya NK (1995) Electrochemical synthesis of urea on reduction of carbon dioxidewith nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. J Electroanal Chem 387(1–2):143–145

    Article  Google Scholar 

  107. Yang GL, Hsieh CT, Ho YS, Kuo TC, Kwon Y, Lu Q, Cheng MJ (2022) Gaseous CO2 coupling with N-containing intermediates for key C–N bond formation during urea production from coelectrolysis over Cu. ACS Catal 12(18):11494–11504

    Article  CAS  Google Scholar 

  108. Liu X, Kumar PV, Chen Q, Zhao L, Ye F, Ma X, Liu D, Chen X, Dai L, Hu C (2022) Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl Catal B 316:121618

    Article  CAS  Google Scholar 

  109. Feng Y, Yang H, Zhang Y, Huang X, Li L, Cheng T, Shao Q (2020) Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett 20(11):8282–8289

    Article  CAS  PubMed  Google Scholar 

  110. Cao N, Quan Y, Guan A, Yang C, Ji Y, Zhang L, Zheng G (2020) Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci 577:109–114

    Article  CAS  PubMed  Google Scholar 

  111. Meng N, Ma X, Wang C, Wang Y, Yang R, Shao J, Huang Y, Xu Y, Zhang B, Yu Y (2022) Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 16(6):9095–9104

    Article  CAS  PubMed  Google Scholar 

  112. Leverett J, Tran-Phu T, Yuwono JA, Kumar P, Kim C, Zhai Q, Han C, Qu J, Cairney J, Simonov AN, Hocking RK, Dai L, Daiyan R, Amal R (2022) Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea. Adv Energy Mater 12(32):2201500

    Article  CAS  Google Scholar 

  113. Tao Z, Rooney C, Liang Y, Wang H (2021) Accessing organonitrogen compounds via C-N coupling in electrocatalytic CO2 reduction. J Am Chem Soc 143(47):19630–19642

    Article  CAS  PubMed  Google Scholar 

  114. Wang H, Jiang Y, Li S, Gou F, Liu X, Jiang Y, Luo W, Shen W, He R, Li M (2022) Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3 on AuPd nanoalloy to form urea: key C-N coupling intermediates. Appl Catal B 318:121819

    Article  CAS  Google Scholar 

  115. Lv C, Zhong L, Liu H, Fang Z, Yan C, Chen M, Kong Y, Lee C, Liu D, Li S, Liu J, Song L, Chen G, Yan Q, Yu G (2021) Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat Sustain 4(10):868–876

    Article  Google Scholar 

  116. Luo Y, Xie K, Ou P, Lavallais C, Peng T, Chen Z, Zhang Z, Wang N, Li X, Grigioni I, Liu B, Sinton D, Dunn J, Sargent E (2023) Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat Catal 6:939–948

    Article  CAS  Google Scholar 

  117. Liu C, Tong H, Wang P, Huang R, Huang P, Zhou G, Liu L (2023) The asymmetric orbital hybridization in single-atom-dimers for urea synthesis by optimizing the C-N coupling reaction pathway. Appl Catal B 336:122917

    Article  CAS  Google Scholar 

  118. Wei X, Wen X, Liu Y, Chen C, Xie C, Wang D, Qiu M, He N, Zhou P, Chen W, Cheng J, Lin H, Jia J, Fu X, Wang S (2022) Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J Am Chem Soc 144(26):11530–11535

    Article  CAS  PubMed  Google Scholar 

  119. Zhang X, Zhu X, Bo S, Chen C, Qiu M, Wei X, He N, Xie C, Chen W, Zheng J, Chen P, Jiang SP, Li Y, Liu Q, Wang S (2022) Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat Commun 13(1):5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jing H, Long J, Li H, Fu X, Xiao J (2023) Computational insights on electrocatalytic synthesis of methylamine from nitrate and carbon dioxide. ACS Catal 13(15):9925–9935

    Article  CAS  Google Scholar 

  121. Guo C, Zhou W, Lan X, Wang Y, Li T, Han S, Yu Y, Zhang B (2022) Electrochemical upgrading of formic acid to formamide via coupling Nitrite co-reduction. J Am Chem Soc 144(35):16006–16011

    Article  CAS  PubMed  Google Scholar 

  122. Tao Z, Wu Y, Wu Z, Shang B, Rooney C, Wang H (2022) Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. J Energy Chem 65:367–370

    Article  CAS  Google Scholar 

  123. Wu Y, Jiang Z, Lin Z, Liang Y, Wang H (2021) Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat Sustain 4(8):725–730

    Article  Google Scholar 

  124. Meng N, Huang Y, Liu Y, Yu Y, Zhang B (2021) Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Reports Phys Sci 2(3):100378

    Article  CAS  Google Scholar 

  125. Zhao Y, Ding Y, Li W, Liu C, Li Y, Zhao Z, Shan Y, Li F, Sun L, Li F (2023) Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites. Nat Commun 14(1):4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Geng J, Ji S, Jin M, Zhang C, Xu M, Wang G, Liang C, Zhang H (2023) Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew Chem Int Ed 62(6):e202210958

    Article  CAS  Google Scholar 

  127. Wan H, Wang X, Tan L, Filippi M, Strasser P, Rossmeisl J, Bagger A (2023) Electrochemical synthesis of urea: co-reduction of nitric oxide and carbon monoxide. ACS Catal 13(3):1926–1933

    Article  CAS  Google Scholar 

  128. Krzywda PM, Paradelo Rodríguez A, Benes NE, Mei BT, Mul G (2022) Carbon-nitrogen bond formation on Cu electrodes during CO2 reduction in NO3 solution. Appl Catal B 316:121512

    Article  CAS  Google Scholar 

  129. Shin S, Sultan S, Chen Z, Lee H, Choi H, Wi T, Park C, Kim T, Lee C, Jeong J, Shin H, Kim T, Ju H, Yoon H, Song H, Lee H, Cheng M, Kwon Y (2023) Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ Sci 16(5):2003–2013

    Article  CAS  Google Scholar 

  130. Qin J, Liu N, Chen L, Wu K, Zhao Q, Liu B, Ye Z (2022) Selective electrochemical urea synthesis from nitrate and CO2 using in situ Ru anchoring onto a three-dimensional copper electrode. ACS Sustain Chem Eng 10(48):15869–15875

    Article  CAS  Google Scholar 

  131. Wang Y, Xia S, Zhang J, Li Z, Cai R, Yu C, Zhang Y, Wu J, Wu Y (2023) Spatial management of CO diffusion on tandem electrode promotes NH2 intermediate formation for efficient urea electrosynthesis. ACS Energy Lett 8(8):3373–3380

    Article  CAS  Google Scholar 

  132. Wei X, Liu Y, Zhu X, Bo S, Xiao L, Chen C, Nga T, He Y, Qiu M, Xie C, Wang D, Liu Q, Dong F, Dong C, Fu X, Wang S (2023) Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater 35(18):e2300020

    Article  PubMed  Google Scholar 

  133. Zhao Q, Lu X, Wang Y, Zhu S, Liu Y, Xiao F, Dou S, Lai W, Shao M (2023) Sustainable and high-rate electrosynthesis of nitrogen fertilizer. Angew Chem Int Ed 62(33):e202307123

    Article  CAS  Google Scholar 

  134. Corbin DR, Schwarz S, Sonnichsen GC (1997) Methylamines synthesis: a review. Catal Today 37(2):71–102

    Article  CAS  Google Scholar 

  135. Jouny M, Lv JJ, Cheng T, Ko BH, Zhu JJ, Goddard III WA, Jiao F (2019) Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat Chem 11(9):846–851

    Article  CAS  PubMed  Google Scholar 

  136. Lan J, Wei Z, Lu YR, Chen D, Zhao S, Chan TS, Tan Y (2023) Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat Commun 14(1):2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Murphy E, Liu Y, Matanovic I, Huang Y, Guo LA, SY, Zang WJ, Yan XX, Martini A, Timoshenko J, Cuenya BR, Zenyuk IV, Pan XJ, Spoerke, Plamen Atanassov ED, (2023) Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat Commun 14(1):4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li P, Li R, Liu Y, Xie M, Jin Z, Yu G (2023) Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J Am Chem Soc 145(11):6471–6479

    Article  CAS  PubMed  Google Scholar 

  139. Chen C, Li S, Zhu X, Bo S, Cheng K, He N, Qiu M, Xie C, Song D, Liu Y, Chen W, Li Y, Liu Q, Li C, Wang S (2023) Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy 5(10):e345

    Article  CAS  Google Scholar 

  140. Wan Y, Zhou H, Zheng M, Huang Z, Kang F, Li J, Lv R (2021) Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv Funct Mater 31(30):2100300

    Article  CAS  Google Scholar 

  141. Liu Y, Li D, Yu J, Ding B (2019) Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: a robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew Chem Int Ed 58(46):16439–16444

    Article  CAS  Google Scholar 

  142. Lv C, Zhong L, Yao Y, Liu D, Kong Y, Jin X, Fang Z, Xu W, Yan C, Dinh KN, Shao M, Song L, Chen G, Li S, Yan Q, Yu G (2020) Boosting electrocatalytic ammonia production through mimicking “π back-donation.” Chem 6(10):2690–2702

    Article  CAS  Google Scholar 

  143. Li L, Chen J, Mosali VSS, Liang Y, Bond AM, Gu Q, Zhang J (2022) Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2. Angew Chem Int Ed 61(39):e202208534

    Article  CAS  Google Scholar 

  144. Gu Z, Zhang Y, Wei X, Duan Z, Gong Q, Luo K (2023) Intermediates regulation via electron-deficient Cu sites for selective nitrate-to-ammonia electroreduction. Adv Mater 35(48):e2303107

    Article  PubMed  Google Scholar 

  145. Jin M, Liu J, Zhang X, Zhang S, Li W, Sun D, Zhang Y, Wang G, Zhang H (2024) Heterostructure Cu3P-Ni2P/CP catalyst assembled membrane electrode for high-efficiency electrocatalytic nitrate to ammonia. Nano Res. https://doi.org/10.1007/s12274-024-6474-z

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 51938014, 22276215) financially supported this work. The Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (No. 22XNKJ28) also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhen Chang.

Ethics declarations

Conflict of interest

The authors declare that this work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, C., Qiu, L. et al. Recent Progress in Electrochemical Synthesis and Conversion of Nitrates in Aqueous Electrolyte. Top Catal (2024). https://doi.org/10.1007/s11244-024-01949-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01949-1

Keywords

Navigation