Skip to main content

Advertisement

Log in

Electrochemical Synthesis of Ammonia from Nitrogen Under Mild Conditions: Current Status and Challenges

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The electrochemical synthesis of ammonia under mild conditions has attracted significant interest in recent years because it can allow for the direct conversion of renewable electricity to chemical energy in the form of ammonia, which is an ideal medium for energy storage and transportation. And in contradistinction to the Haber–Bosch process, the electrochemical synthesis of ammonia is a much more environmentally friendly process that can operate under mild conditions with zero carbon dioxide (CO2) emission. However, this process is severely hindered by poor ammonia formation rates and Faradaic efficiency due to the competing hydrogen evolution reaction. Based on this, a review focused on the current status and challenges of the electrochemical synthesis of ammonia is imperative to promulgate this key process and promote future research. And therefore, this review will systematically survey the recent progress of the electrochemical synthesis of ammonia; and different from previous reviews, this review will include not only advances in electrocatalysts, but also in reactors, electrolytes and reaction mechanisms. In addition, future research directions and strategies to improve the performance of ammonia electrochemical synthesis systems are proposed with the aim of shedding light on the future direction of ammonia synthesis through nitrogen electrochemical reduction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sources from the US Department of Energy)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lipman, T., Shah, N.: Ammonia as an alternative energy storage medium for hydrogen fuel cells: scientific and technical review for near-term stationary power demonstration projects, final report. UC Berkeley Transportation Sustainability Research Center (2007)

  2. Beck, W., Apos, O.J., et al.: Hydrogen permeation in metals as a function of stress, temperature and dissolved hydrogen concentration. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 290, 220–235 (1966). https://doi.org/10.1098/rspa.1966.0046

    Article  CAS  Google Scholar 

  3. Schiffer, Z.J., Manthiram, K.: Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017). https://doi.org/10.1016/j.joule.2017.07.008

    Article  Google Scholar 

  4. Varotto, A.: Raising the standards: Enhanced catalytic performance for globle ammonia production. Web. (2015)

  5. Medford, A.J., Hatzell, M.C.: Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017). https://doi.org/10.1021/acscatal.7b00439

    Article  CAS  Google Scholar 

  6. Lu, Y.H., Yang, Y., Zhang, T.F., et al.: Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10, 10507–10515 (2016). https://doi.org/10.1021/acsnano.6b06472

    Article  CAS  PubMed  Google Scholar 

  7. Oshikiri, T., Ueno, K., Misawa, H.: Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55, 3942–3946 (2016). https://doi.org/10.1002/anie.201511189

    Article  CAS  Google Scholar 

  8. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, 4998 (2017). https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  9. ARPA-E: Renewable energy to fuels through utilization of energy-dense liquids (REFUEL) program overview, US DOE (2016)

  10. Giddey, S., Badwal, S.P.S., Kulkarni, A.: Review of electrochemical ammonia production technologies and materials. Int. J. Hydrog. Energy 38, 14576–14594 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054

    Article  CAS  Google Scholar 

  11. Guo, C.X., Ran, J.R., Vasileff, A., et al.: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/c7ee02220d

    Article  CAS  Google Scholar 

  12. Licht, S., Cui, B., Wang, B., et al.: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345, 637–640 (2014). https://doi.org/10.1126/science.1254234

    Article  CAS  PubMed  Google Scholar 

  13. Kyriakou, V., Garagounis, I., Vasileiou, E., et al.: Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017). https://doi.org/10.1016/j.cattod.2016.06.014

    Article  CAS  Google Scholar 

  14. Hao, Y.C., Guo, Y., Chen, L.W., et al.: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7

    Article  Google Scholar 

  15. Bao, D., Zhang, Q., Meng, F.L., et al.: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799

    Article  CAS  Google Scholar 

  16. Shi, M.M., Bao, D., Wulan, B.R., et al.: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 Conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017). https://doi.org/10.1002/adma.201606550

    Article  CAS  Google Scholar 

  17. Zhang, L.L., Ding, L.X., Chen, G.F., et al.: Inside cover: ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 131, 2638–2643 (2019). https://doi.org/10.1002/anie.201900402

    Article  Google Scholar 

  18. Nash, J., Yang, X., Anibal, J., et al.: Electrochemical nitrogen reduction reaction on noble metal catalysts in proton and hydroxide exchange membrane electrolyzers. J. Electrochem. Soc. 164, F1712–F1716 (2017). https://doi.org/10.1149/2.0071802jes

    Article  CAS  Google Scholar 

  19. Wang, J., Yu, L., Hu, L., et al.: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018). https://doi.org/10.1038/s41467-018-04213-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, H.M., Han, S.H., Zhao, Y., et al.: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 6, 3211–3217 (2018). https://doi.org/10.1039/c7ta10866d

    Article  CAS  Google Scholar 

  21. Mukherjee, S., Cullen, D.A., Karakalos, S., et al.: Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217–226 (2018). https://doi.org/10.1016/j.nanoen.2018.03.059

    Article  CAS  Google Scholar 

  22. Song, Y., Johnson, D., Peng, R., et al.: A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 4, e1700336 (2018). https://doi.org/10.1126/sciadv.1700336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lv, C., Yan, C.S., Chen, G., et al.: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018). https://doi.org/10.1002/anie.201801538

    Article  CAS  Google Scholar 

  24. Zhang, X.P., Kong, R.M., Du, H.T., et al.: Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 54, 5323–5325 (2018). https://doi.org/10.1039/c8cc00459e

    Article  CAS  Google Scholar 

  25. Li, S.J., Bao, D., Shi, M.M., et al.: Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017). https://doi.org/10.1002/adma.201700001

    Article  CAS  Google Scholar 

  26. Wang, D.B., Azofra, L.M., Harb, M., et al.: Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions. ChemSusChem 11, 3416–3422 (2018). https://doi.org/10.1002/cssc.201801632

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L., Ji, X.Q., Ren, X., et al.: Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv. Mater. 30, 1800191 (2018). https://doi.org/10.1002/adma.201800191

    Article  CAS  Google Scholar 

  28. Chen, G.F., Cao, X.R., Wu, S.Q., et al.: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393

    Article  CAS  PubMed  Google Scholar 

  29. Cheng, H., Ding, L.X., Chen, G.F., et al.: Nitrogen reduction reaction: molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions (adv. mater. 46/2018). Adv. Mater. 30, 1870350 (2018). https://doi.org/10.1002/adma.201870350

    Article  Google Scholar 

  30. Zhang, L.N., Mallikarjun Sharada, S., Singh, A.R., et al.: A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 4982–4989 (2018). https://doi.org/10.1039/c7cp05484j

    Article  CAS  PubMed  Google Scholar 

  31. Lindley, B.M., Appel, A.M., Krogh-Jespersen, K., et al.: Evaluating the thermodynamics of electrocatalytic N2 reduction in acetonitrile. ACS Energy Lett. 1, 698–704 (2016). https://doi.org/10.1021/acsenergylett.6b00319

    Article  CAS  Google Scholar 

  32. Kang, C.S.M., Zhang, X.Y., MacFarlane, D.R.: Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 122, 24550–24558 (2018). https://doi.org/10.1021/acs.jpcc.8b07752

    Article  CAS  Google Scholar 

  33. Ortuño, M.A., Hollóczki, O., Kirchner, B., et al.: Selective electrochemical nitrogen reduction driven by hydrogen bond interactions at metal–ionic liquid interfaces. J. Phys. Chem. Lett. 10, 513–517 (2019). https://doi.org/10.1021/acs.jpclett.8b03409

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, F.L., Azofra, L.M., Ali, M., et al.: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017). https://doi.org/10.1039/c7ee02716h

    Article  CAS  Google Scholar 

  35. Kim, K., Lee, N., Yoo, C.Y., et al.: Communication: electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J. Electrochem. Soc. 163, F610–F612 (2016). https://doi.org/10.1149/2.0231607jes

    Article  CAS  Google Scholar 

  36. Kim, K., Yoo, C.Y., Kim, J.N., et al.: Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J. Electrochem. Soc. 163, F1523–F1526 (2016). https://doi.org/10.1149/2.0741614jes

    Article  CAS  Google Scholar 

  37. Suryanto, B.H.R., Kang, C.S.M., Wang, D.B., et al.: Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 3, 1219–1224 (2018). https://doi.org/10.1021/acsenergylett.8b00487

    Article  CAS  Google Scholar 

  38. Zhao, X.R., Yin, F.X., Liu, N., et al.: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 52, 10175–10185 (2017). https://doi.org/10.1007/s10853-017-1176-5

    Article  CAS  Google Scholar 

  39. Chen, S.M., Perathoner, S., Ampelli, C., et al.: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533

    Article  CAS  Google Scholar 

  40. Yang, X., Nash, J., Anibal, J., et al.: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 140, 13387–13391 (2018). https://doi.org/10.1021/jacs.8b08379

    Article  CAS  PubMed  Google Scholar 

  41. Kong, J.M., Lim, A., Yoon, C., et al.: Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustainable Chem. Eng. 5, 10986–10995 (2017). https://doi.org/10.1021/acssuschemeng.7b02890

    Article  CAS  Google Scholar 

  42. Ito, Y.: Importance of molten salt electrochemical processes for energy conversion and storage, 220th ECS Meeting, Boston, MA (2011)

  43. Ito, Y., Nishikiori, T., Tsujimura, H.: (Invited) Challenge of industrializing novel molten salt electrochemical processes. ECS Trans. 75, 115–135 (2016). https://doi.org/10.1149/07515.0115ecst

    Article  CAS  Google Scholar 

  44. Ito, Y., Goto, T.: Electrochemistry of nitrogen and nitrides in molten salts. J. Nucl. Mater. 344, 128–135 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.030

    Article  CAS  Google Scholar 

  45. Goto, T., Ito, Y.: Electrochemical reduction of nitrogen gas in a molten chloride system. Electrochim. Acta 43, 3379–3384 (1998). https://doi.org/10.1016/s0013-4686(98)00010-3

    Article  CAS  Google Scholar 

  46. Goto, T.: Electrochemical behavior of nitride ions in a molten chloride system. J. Electrochem. Soc. 144, 2271 (1997). https://doi.org/10.1149/1.1837802

    Article  CAS  Google Scholar 

  47. Murakami, T., Nishikiori, T., Nohira, T., et al.: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J. Am. Chem. Soc. 125, 334–335 (2003). https://doi.org/10.1021/ja028891t

    Article  CAS  PubMed  Google Scholar 

  48. Murakami, T., Nohira, T., Ogata, Y.H., et al.: Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source. Electrochem. Solid-State Lett. 8, D12 (2005). https://doi.org/10.1149/1.1870633

    Article  CAS  Google Scholar 

  49. Murakami, T., Nohira, T., Ogata, Y.H., et al.: Electrochemical synthesis of ammonia and coproduction of metal sulfides from hydrogen sulfide and nitrogen under atmospheric pressure. J. Electrochem. Soc. 152, D109 (2005). https://doi.org/10.1149/1.1904984

    Article  CAS  Google Scholar 

  50. Murakami, T., Nohira, T., Goto, T., et al.: Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure. Electrochim. Acta 50, 5423–5426 (2005). https://doi.org/10.1016/j.electacta.2005.03.023

    Article  CAS  Google Scholar 

  51. Murakami, T., Nishikiori, T., Nohira, T., et al.: Electrolytic ammonia synthesis from hydrogen chloride and nitrogen gases with simultaneous recovery of chlorine under atmospheric pressure. Electrochem. Solid-State Lett. 8, D19 (2005). https://doi.org/10.1149/1.1940489

    Article  CAS  Google Scholar 

  52. Murakami, T., Nohira, T., Araki, Y., et al.: Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode. Electrochem. Solid-State Lett. 10, E4 (2007). https://doi.org/10.1149/1.2437674

    Article  CAS  Google Scholar 

  53. Kobayashi, K., Nakajima, H., Goto, T., et al.: Thermodynamics of the N2/N3-redox couple in a LiBr–KBr–CsBr melt. J. Phys. Chem. B 109, 23972–23975 (2005). https://doi.org/10.1021/jp053920i

    Article  CAS  PubMed  Google Scholar 

  54. Kim, K., Kim, J.N., Yoon, H.C., et al.: Effect of electrode material on the electrochemical reduction of nitrogen in a molten LiCl–KCl–CsCl system. Int. J. Hydrog. Energy 40, 5578–5582 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.130

    Article  CAS  Google Scholar 

  55. Kim, K., Yoo, C.Y., Kim, J.N., et al.: Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean J. Chem. Eng. 33, 1777–1780 (2016). https://doi.org/10.1007/s11814-016-0086-6

    Article  CAS  Google Scholar 

  56. Ganley, J.C.: An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte. J. Power Sources 178, 44–47 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.093

    Article  CAS  Google Scholar 

  57. Bicer, Y., Dincer, I.: Performance assessment of electrochemical ammonia synthesis using photoelectrochemically produced hydrogen. Int. J. Energy Res. 41, 1987–2000 (2017). https://doi.org/10.1002/er.3756

    Article  CAS  Google Scholar 

  58. Garagounis, I., Kyriakou, V., Skodra, A., et al.: Electrochemical synthesis of ammonia in solid electrolyte cells. Front. Energy Res. 2, 1 (2014). https://doi.org/10.3389/fenrg.2014.00001

    Article  Google Scholar 

  59. Kosaka, F., Nakamura, T., Oikawa, A., et al.: Electrochemical acceleration of ammonia synthesis on Fe-based alkali-promoted electrocatalyst with proton conducting solid electrolyte. ACS Sustainable Chem. Eng. 5, 10439–10446 (2017). https://doi.org/10.1021/acssuschemeng.7b02469

    Article  CAS  Google Scholar 

  60. Kishira, S., Qing, G., Suzu, S.Y., et al.: Ammonia synthesis at intermediate temperatures in solid-state electrochemical cells using cesium hydrogen phosphate based electrolytes and noble metal catalysts. Int. J. Hydrog. Energy 42, 26843–26854 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.052

    Article  CAS  Google Scholar 

  61. Kobayashi, Y., Shimoda, N., Kimura, Y., et al.: Electrochemical synthesis of ammonia using proton conducting solid electrolyte and Ru-doped BaCe0.9Y0.1O3-δ electrode catalyst. ECS Trans. 75, 43–52 (2017). https://doi.org/10.1149/07542.0043ecst

    Article  CAS  Google Scholar 

  62. Shimoda, N., Kobayashi, Y., Kimura, Y., et al.: Electrochemical synthesis of ammonia using a proton conducting solid electrolyte and nickel cermet electrode. J. Ceram. Soc. Japan 125, 252–256 (2017). https://doi.org/10.2109/jcersj2.16286

    Article  CAS  Google Scholar 

  63. Imamura, K., Kubota, J.: Electrochemical membrane cell for NH3 synthesis from N2 and H2O by electrolysis at 200 to 250 °C using a Ru catalyst, hydrogen-permeable Pd membrane and phosphate-based electrolyte. Sustainable Energy Fuels 2, 1278–1286 (2018). https://doi.org/10.1039/c8se00054a

    Article  CAS  Google Scholar 

  64. Yoo, C.Y., Park, J.H., Kim, K., et al.: Role of protons in electrochemical ammonia synthesis using solid-state electrolytes. ACS Sustainable Chem. Eng. 5, 7972–7978 (2017). https://doi.org/10.1021/acssuschemeng.7b01515

    Article  CAS  Google Scholar 

  65. Lv, C., Qian, Y.M., Yan, C.S., et al.: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 10246–10250 (2018). https://doi.org/10.1002/anie.201806386

    Article  CAS  Google Scholar 

  66. Leonard, R.H.: Quantitative range of Nessler’s reaction with ammonia. Clin. Chem. 9, 417–422 (1963)

    Article  CAS  Google Scholar 

  67. Krug, F.J., Růžička, J., Hansen, E.H.: Determination of ammonia in low concentrations with Nessler’s reagent by flow injection analysis. Analyst 104, 47–54 (1979). https://doi.org/10.1039/an9790400047

    Article  CAS  Google Scholar 

  68. Association, American Public Health: Standard Methods for the Examination of Water and Wastewater, 14th edn. Amer. Public Health Assn, Washington, DC (1976)

    Google Scholar 

  69. Searle, P.L.: The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 109, 549 (1984). https://doi.org/10.1039/an9840900549

    Article  CAS  Google Scholar 

  70. Bolleter, W.T., Bushman, C.J., Tidwell, P.W.: Spectrophotometric determination of ammonia as indophenol. Anal. Chem. 33, 592–594 (1961). https://doi.org/10.1021/ac60172a034

    Article  CAS  Google Scholar 

  71. Verdouw, H., van Echteld, C.J.A., Dekkers, E.M.J.: Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 12, 399–402 (1978). https://doi.org/10.1016/0043-1354(78)90107-0

    Article  CAS  Google Scholar 

  72. Casallas, C., Dincer, I.: Assessment of an integrated solar hydrogen system for electrochemical synthesis of ammonia. Int. J. Hydrog. Energy 42, 21495–21500 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.094

    Article  CAS  Google Scholar 

  73. Wang, H., Wang, L., Wang, Q., et al.: Ambient electrosynthesis of ammonia: electrode porosity and composition engineering. Angew. Chem. Int. Ed. 57, 12360–12364 (2018). https://doi.org/10.1002/anie.201805514

    Article  CAS  Google Scholar 

  74. McEnaney, J.M., Singh, A.R., Schwalbe, J.A., et al.: Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017). https://doi.org/10.1039/c7ee01126a

    Article  CAS  Google Scholar 

  75. Liu, C., Sakimoto, K.K., Colón, B.C., et al.: Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proc. Natl. Acad. Sci. USA 114, 6450–6455 (2017). https://doi.org/10.1073/pnas.1706371114

    Article  CAS  PubMed  Google Scholar 

  76. George, M., Nagaraja, K.S., Balasubramanian, N.: Spectrophotometric determination of hydrazine. Anal. Lett. 40, 2597–2605 (2007). https://doi.org/10.1080/00032710701585552

    Article  CAS  Google Scholar 

  77. Watt, G.W., Chrisp, J.D.: Spectrophotometric method for determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952). https://doi.org/10.1021/ac60072a044

    Article  CAS  Google Scholar 

  78. Smolenkov, A.D., Rodin, I.A., Shpigun, O.A.: Spectrophotometric and fluorometric methods for the determination of hydrazine and its methylated analogues. J. Anal. Chem. 67, 98–113 (2012). https://doi.org/10.1134/s1061934812020116

    Article  CAS  Google Scholar 

  79. van der Ham, C.J.M., Koper, M.T.M., Hetterscheid, D.G.H.: Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014). https://doi.org/10.1039/c4cs00085d

    Article  CAS  PubMed  Google Scholar 

  80. Skúlason, E., Bligaard, T., Gudmundsdóttir, S., et al.: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f

    Article  CAS  PubMed  Google Scholar 

  81. Back, S., Jung, Y.: On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 18, 9161–9166 (2016). https://doi.org/10.1039/c5cp07363d

    Article  CAS  PubMed  Google Scholar 

  82. Abghoui, Y., Garden, A.L., Hlynsson, V.F., et al.: Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 17, 4909–4918 (2015). https://doi.org/10.1039/c4cp04838e

    Article  CAS  PubMed  Google Scholar 

  83. Yao, Y., Feng, Q., Zhu, S.Q., et al.: Chromium oxynitride electrocatalysts for electrochemical synthesis of ammonia under ambient conditions. Small Methods 3, 1800324 (2019). https://doi.org/10.1002/smtd.201800324

    Article  CAS  Google Scholar 

  84. Abghoui, Y., Skúlason, E.: Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal. Today 286, 69–77 (2017). https://doi.org/10.1016/j.cattod.2016.11.047

    Article  CAS  Google Scholar 

  85. Abghoui, Y., Garden, A.L., Howalt, J.G., et al.: Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal. 6, 635–646 (2016). https://doi.org/10.1021/acscatal.5b01918

    Article  CAS  Google Scholar 

  86. Abghoui, Y., Skúlason, E.: Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 121, 6141–6151 (2017). https://doi.org/10.1021/acs.jpcc.7b00196

    Article  CAS  Google Scholar 

  87. Höskuldsson, Á.B., Abghoui, Y., Gunnarsdóttir, A.B., et al.: Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 5, 10327–10333 (2017). https://doi.org/10.1021/acssuschemeng.7b02379

    Article  CAS  Google Scholar 

  88. Li, Q.Y., Qiu, S.Y., He, L.Z., et al.: Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst. Phys. Chem. Chem. Phys. 20, 23338–23343 (2018). https://doi.org/10.1039/c8cp04474k

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Z.W., Lang, X.Y., Jiang, Q.: Discovery of cobweb-like MoC6 and its application for nitrogen fixation. J. Mater. Chem. A 6, 9623–9628 (2018). https://doi.org/10.1039/c8ta03481h

    Article  CAS  Google Scholar 

  90. Matanovic, I., Garzon, F.H.: Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study. Phys. Chem. Chem. Phys. 20, 14679–14687 (2018). https://doi.org/10.1039/c8cp01643g

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Y.M., Su, Y., Quan, X., et al.: Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018). https://doi.org/10.1021/acscatal.7b02165

    Article  CAS  Google Scholar 

  92. Yu, X.M., Han, P., Wei, Z.X., et al.: Boron-doped graphene for electrocatalytic N2 reduction. Joule 2, 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007

    Article  CAS  Google Scholar 

  93. Kumar, C.V.S., Subramanian, V.: Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? – A DFT investigation. Phys. Chem. Chem. Phys. 19, 15377–15387 (2017). https://doi.org/10.1039/c7cp02220d

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Z.X., Yu, Z.G., Zhao, J.X.: Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 12835–12844 (2018). https://doi.org/10.1039/c8cp01215f

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, J., Zhao, J.X., Cai, Q.H.: Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 9248–9255 (2018). https://doi.org/10.1039/c7cp08626a

    Article  CAS  PubMed  Google Scholar 

  96. Choi, C., Back, S., Kim, N.Y., et al.: Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 8, 7517–7525 (2018). https://doi.org/10.1021/acscatal.8b00905

    Article  CAS  Google Scholar 

  97. He, T.W., Matta, S.K., Du, A.J.: Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 21, 1546–1551 (2019). https://doi.org/10.1039/c8cp06978f

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, H.R., Hu, Y.L., Wei, S.H., et al.: Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study. J. Phys. Chem. C 123, 4274–4281 (2019). https://doi.org/10.1021/acs.jpcc.8b11696

    Article  CAS  Google Scholar 

  99. Li, X.Y., Zhong, W.H., Cui, P., et al.: Design of efficient catalysts with double transition metal atoms on C2N layer. J. Phys. Chem. Lett. 7, 1750–1755 (2016). https://doi.org/10.1021/acs.jpclett.6b00096

    Article  CAS  PubMed  Google Scholar 

  100. Ji, S., Wang, Z.X., Zhao, J.X.: A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: a computational study. J. Mater. Chem. A 7, 2392–2399 (2019). https://doi.org/10.1039/c8ta10497b

    Article  CAS  Google Scholar 

  101. Liu, C.W., Li, Q.Y., Wu, C.Z., et al.: Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141, 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165

    Article  CAS  PubMed  Google Scholar 

  102. Lin, Z., Carvalho, B.R., Kahn, E., et al.: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016). https://doi.org/10.1088/2053-1583/3/2/022002

    Article  Google Scholar 

  103. Yao, Y., Zhu, S.Q., Wang, H.J., et al.: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101

    Article  CAS  PubMed  Google Scholar 

  104. Yao, Y., Wang, H.J., Yuan, X.Z., et al.: Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 4, 1336–1341 (2019). https://doi.org/10.1021/acsenergylett.9b00699

    Article  CAS  Google Scholar 

  105. Wang, H.J., Yu, H.J., Wang, Z.Q., et al.: Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 15, 1804769 (2019). https://doi.org/10.1002/smll.201804769

    Article  CAS  Google Scholar 

  106. Wang, Z.Q., Li, Y.H., Yu, H.J., et al.: Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 11, 3480–3485 (2018). https://doi.org/10.1002/cssc.201801444

    Article  CAS  PubMed  Google Scholar 

  107. Shi, M.M., Bao, D., Li, S.J., et al.: Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 8, 1800124 (2018). https://doi.org/10.1002/aenm.201800124

    Article  CAS  Google Scholar 

  108. Lee, H.K., Koh, C.S.L., Lee, Y.H., et al.: Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018). https://doi.org/10.1126/sciadv.aar3208

    Article  Google Scholar 

  109. Yang, D.S., Chen, T., Wang, Z.J.: Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 5, 18967–18971 (2017). https://doi.org/10.1039/c7ta06139k

    Article  CAS  Google Scholar 

  110. Ren, X., Cui, G.W., Chen, L., et al.: Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem. Commun. 54, 8474–8477 (2018). https://doi.org/10.1039/c8cc03627f

    Article  CAS  Google Scholar 

  111. Suryanto, B.H.R., Wang, D.B., Azofra, L.M., et al.: MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 4, 430–435 (2019). https://doi.org/10.1021/acsenergylett.8b02257

    Article  CAS  Google Scholar 

  112. Hu, L., Khaniya, A., Wang, J., et al.: Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 8, 9312–9319 (2018). https://doi.org/10.1021/acscatal.8b02585

    Article  CAS  Google Scholar 

  113. Zhao, X.H., Lan, X., Yu, D.K., et al.: Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions. Chem. Commun. 54, 13010–13013 (2018). https://doi.org/10.1039/c8cc08045c

    Article  CAS  Google Scholar 

  114. Wang, Y., Cui, X.Q., Zhao, J.X., et al.: Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 9, 336–344 (2019). https://doi.org/10.1021/acscatal.8b03802

    Article  CAS  Google Scholar 

  115. Zhang, Y., Qiu, W.B., Ma, Y.J., et al.: High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 8, 8540–8544 (2018). https://doi.org/10.1021/acscatal.8b02311

    Article  CAS  Google Scholar 

  116. Du, H.T., Guo, X.X., Kong, R.M., et al.: Cr2O3 nanofiber: a high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. Chem. Commun. 54, 12848–12851 (2018). https://doi.org/10.1039/c8cc07186a

    Article  CAS  Google Scholar 

  117. Zhang, R., Zhang, Y., Ren, X., et al.: High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 6, 9545–9549 (2018). https://doi.org/10.1021/acssuschemeng.8b01261

    Article  CAS  Google Scholar 

  118. Song, P.F., Wang, H., Kang, L., et al.: Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem. Commun. 55, 687–690 (2019). https://doi.org/10.1039/c8cc09256g

    Article  CAS  Google Scholar 

  119. Qiu, W.B., Xie, X.Y., Qiu, J.D., et al.: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 9, 3485 (2018). https://doi.org/10.1038/s41467-018-05758-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yin, P.Q., Yao, T., Wu, Y.E., et al.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  121. Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  122. Deng, J., Li, H.B., Xiao, J.P., et al.: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015). https://doi.org/10.1039/c5ee00751h

    Article  CAS  Google Scholar 

  123. Qiu, H.J., Ito, Y., Cong, W.T., et al.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381

    Article  CAS  Google Scholar 

  124. Zhao, C.M., Dai, X.Y., Yao, T., et al.: Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017). https://doi.org/10.1021/jacs.7b02736

    Article  CAS  PubMed  Google Scholar 

  125. Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a

    Article  CAS  PubMed  Google Scholar 

  126. Han, L.L., Liu, X.J., Chen, J.P., et al.: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201811728

    Article  CAS  Google Scholar 

  127. Geng, Z.G., Liu, Y., Kong, X.D., et al.: N2 electrochemical reduction: achieving a record-high yield rate of 120.9 μgNH3  mgcat.–1  h–1 for N2 electrochemical reduction over Ru single-atom catalysts (adv. mater. 40/2018). Adv. Mater. 30, 1870301 (2018). https://doi.org/10.1002/adma.201870301

    Article  Google Scholar 

  128. Tao, H.C., Choi, C., Ding, L.X., et al.: Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019). https://doi.org/10.1016/j.chempr.2018.10.007

    Article  CAS  Google Scholar 

  129. Wang, M.F., Liu, S.S., Qian, T., et al.: Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 10, 341 (2019). https://doi.org/10.1038/s41467-018-08120-x

  130. Ji, L., Shi, X.F., Asiri, A.M., et al.: Nanostructured bromide-derived Ag film: an efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 57, 14692–14697 (2018). https://doi.org/10.1021/acs.inorgchem.8b02436

    Article  CAS  PubMed  Google Scholar 

  131. Wang, H.J., Li, Y.H., Li, C.J., et al.: One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for electrocatalytic nitrogen reduction to ammonia. J. Mater. Chem. A 7, 801–805 (2019). https://doi.org/10.1039/c8ta09482a

    Article  CAS  Google Scholar 

  132. Pang, F.J., Wang, Z.F., Zhang, K., et al.: Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy 58, 834–841 (2019). https://doi.org/10.1016/j.nanoen.2019.02.019

    Article  CAS  Google Scholar 

  133. Kumar, R.D., Wang, Z.Q., Li, C.J., et al.: Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia. J. Mater. Chem. A 7, 3190–3196 (2019). https://doi.org/10.1039/c8ta10562f

    Article  CAS  Google Scholar 

  134. Cui, X.Y., Tang, C., Liu, X.M., et al.: Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem. Eur. J. 24, 18494–18501 (2018). https://doi.org/10.1002/chem.201800535

    Article  CAS  PubMed  Google Scholar 

  135. Zhu, X.J., Liu, Z.C., Liu, Q., et al.: Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 54, 11332–11335 (2018). https://doi.org/10.1039/c8cc06366d

    Article  CAS  Google Scholar 

  136. Cong, L.C., Yu, Z.C., Liu, F.B., et al.: Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions. Catal. Sci. Technol. 9, 1208–1214 (2019). https://doi.org/10.1039/c8cy02316f

    Article  CAS  Google Scholar 

  137. Manjunatha, R., Karajić, A., Goldstein, V., et al.: Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions. ACS Appl. Mater. Inter. 11, 7981–7989 (2019). https://doi.org/10.1021/acsami.8b20692

    Article  CAS  Google Scholar 

  138. Li, X.H., Ren, X., Liu, X.J., et al.: A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 7, 2524–2528 (2019). https://doi.org/10.1039/c8ta10433f

    Article  CAS  Google Scholar 

  139. Xia, L., Li, B.H., Zhang, Y., et al.: Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 58, 2257–2260 (2019). https://doi.org/10.1021/acs.inorgchem.8b03143

    Article  CAS  PubMed  Google Scholar 

  140. Xu, B., Liu, Z.C., Qiu, W.B., et al.: La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochim. Acta 298, 106–111 (2019). https://doi.org/10.1016/j.electacta.2018.12.084

    Article  CAS  Google Scholar 

  141. Xu, B., Xia, L., Zhou, F.L., et al.: Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 7, 2889–2893 (2019). https://doi.org/10.1021/acssuschemeng.8b05007

    Article  CAS  Google Scholar 

  142. Yang, L., Wu, T.W., Zhang, R., et al.: Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies. Nanoscale 11, 1555–1562 (2019). https://doi.org/10.1039/c8nr09564g

    Article  CAS  PubMed  Google Scholar 

  143. Wang, F., Liu, Y.P., Zhang, H., et al.: CuO/graphene nanocomposite for nitrogen reduction reaction. ChemCatChem 11, 1441–1447 (2019). https://doi.org/10.1002/cctc.201900041

    Article  CAS  Google Scholar 

  144. Wang, Y., Jia, K., Pan, Q., et al.: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions. ACS Sustainable Chem. Eng. 7, 117–122 (2019). https://doi.org/10.1021/acssuschemeng.8b05332

    Article  CAS  Google Scholar 

  145. Chu, K., Liu, Y.P., Li, Y.B., et al.: Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 7, 4389–4394 (2019). https://doi.org/10.1039/c9ta00016j

    Article  CAS  Google Scholar 

  146. Gao, W.B., Guo, J.P., Wang, P.K., et al.: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018). https://doi.org/10.1038/s41560-018-0268-z

    Article  CAS  Google Scholar 

  147. Wang, P.K., Chang, F., Gao, W.B., et al.: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017). https://doi.org/10.1038/nchem.2595

    Article  CAS  PubMed  Google Scholar 

  148. Zheng, J.Y., Lyu, Y.H., Qiao, M., et al.: Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 5, 617–633 (2019). https://doi.org/10.1016/j.chempr.2018.12.003

    Article  CAS  Google Scholar 

  149. Ali, M., Zhou, F.L., Chen, K., et al.: Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016). https://doi.org/10.1038/ncomms11335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ling, C.Y., Niu, X.H., Li, Q., et al.: Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 140, 14161–14168 (2018). https://doi.org/10.1021/jacs.8b07472

    Article  CAS  PubMed  Google Scholar 

  151. Oshikiri, T., Ueno, K., Misawa, H.: Plasmon-Induced Ammonia Synthesis through Nitrogen Photofixation with Visible Light Irradiation. Angew. Chem. Int. Edit. 53, 9802–9805 (2014). https://doi.org/10.1002/anie.201404748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shenzhen Peacock Plan (KQTD2016022620054656), the Research Grant Council of the Hong Kong Special Administrative Region (N_HKUST610/17, 16,309,418), the Shenzhen Key Laboratory of Hydrogen Energy (ZDSYS201603311013489), the Development and Reform Commission of Shenzhen Municipality (2017) No. 1106, the Development and Reform Commission of Shenzhen Municipality (2017) No. 1181, the Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06N500) and the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (2018B030322001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li or Minhua Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Wang, J., Shahid, U.B. et al. Electrochemical Synthesis of Ammonia from Nitrogen Under Mild Conditions: Current Status and Challenges. Electrochem. Energ. Rev. 3, 239–270 (2020). https://doi.org/10.1007/s41918-019-00061-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00061-3

Keywords

Navigation