Skip to main content
Log in

Recent Development of Catalysts for the Nitrate Reduction Reaction: Electrochemical Solution to Produce Ammonia

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ammonia, essential for agriculture fertilizers and as an energy carrier, is traditionally produced by the energy-intensive Haber–Bosch process, which is a significant energy consumer and a notable contributor to CO2 emissions. The electrochemical nitrate reduction reaction (NO3RR) to produce ammonia presents a promising and environmentally friendly solution, allowing to reduce NO3 contamination in waste water resources. This review covers recent trends in noble and non-noble metal-based catalysts, single-atomic metal catalysts, and metal-free catalysts for NO3RR. Specifically, it was found that transition metals were effective in enhancing electron transfer in the NO3RR due to their d-orbital energy levels. Furthermore, alloys or single atomic catalysts with transition metals have been studied to improve NO3RR performance by adjusting the crystal plane or generating oxygen vacancies. Metal-free catalysts have been investigated and have exhibited great potentials in the NO3RR. It was revealed that tuning the electronic properties can effectively suppress the side reactions and increase the ammonia yield and Faradaic efficiency. This review aims to provide guidance for catalyst design and performance improvement in future NO3RR research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Ref. [23])

Fig. 3
Fig. 4

Adapted from Ref. [78] with permission from Springer Nature publisher)

Similar content being viewed by others

Data availability

It is not applicable since it is a review article.

References

  1. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA (2018) Greening ammonia toward the solar ammonia refinery. Joule 2(6):1055–1074

    Article  CAS  Google Scholar 

  2. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636–639

    Article  CAS  Google Scholar 

  3. Hu H, Yang H, Yang X, Wang R, Zhou L, Dai Y, Ji N, Wang H, Shi Z, Zhou G, Chen B, Luo Y, He C (2020) Copper-sulfide cluster assembled architecture via in situ reaction. Chin Chem Lett 31(12):3213–3215

    Article  CAS  Google Scholar 

  4. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR (2018) Beyond fossil fuel–driven nitrogen transformations. Science 360(6391):873

    Article  CAS  Google Scholar 

  5. Ahlgren WL (2012) The dual-fuel strategy: an energy transition plan. Proc IEEE 100(11):3001–3052

    Article  Google Scholar 

  6. Wang H, Huang B, Yu C, Lu M, Huang H, Zhou Y (2019) Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3. Appl Catal A: Gen 588:117207

    Article  CAS  Google Scholar 

  7. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30(13):2487–2504

    Article  CAS  Google Scholar 

  8. Elvers B, Hawklins S, Schulz G (1991) 5th Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co., Hoboken, NJ

    Google Scholar 

  9. Patil B, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today 256:49–66

    Article  CAS  Google Scholar 

  10. Li L, Tang C, Cui X, Zheng Y, Wang X, Xu H, Zhang S, Shao T, Davey K, Qiao S (2021) Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew Chem 133(25):14250–14256

    Article  Google Scholar 

  11. Liang J, Liu Q, Alshehri AA, Sun X (2022) Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy 1(2):e9120010

    Article  Google Scholar 

  12. Yang X, Kattel S, Nash J, Chang X, Lee JH, Yan Y, Chen JG, Xu B (2019) Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew Chem Inter Ed 58(39):13768–13772

    Article  CAS  Google Scholar 

  13. Wang Y, Yu Y, Jia R, Zhang C, Zhang B (2019) Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Nat Sci Rev 6(4):730–738

    Article  CAS  Google Scholar 

  14. Wang X, Wang W, Qiao M, Wu G, Chen W, Yuan T, Xu Q, Chen M, Zhang Y, Wang X, Wang J, Ge J, Hong X, Li Y, Wu Y, Li Y (2018) Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull 63(19):1246–1253

    Article  CAS  Google Scholar 

  15. World Health Organization (2021) A global overview of national regulations and standards for drinking-water quality

  16. Fang L, Wang S, Song C, Lu S, Yang X, Qi X, Liu H (2022) Boosting nitrate electroreduction to ammonia via in situ generated stacking faults in oxide-derived copper. Chem Eng J 446:137341

    Article  CAS  Google Scholar 

  17. Niu S (2023) Recent progress and challenges in structural construction strategy of metal-based catalysts for nitrate electroreduction to ammonia. J Energy Chem 86:69–83

    Article  CAS  Google Scholar 

  18. Theerthagiri J, Park J, Das HT, Rahamathulla N, Cardoso ESF, Murthy AP, Maia G, Vo D-VN, Choi MY (2022) Electrocatalytic conversion of nitrate waste into ammonia: a review. Environ Chem Lett 20:2929–2949

    Article  CAS  Google Scholar 

  19. Lu X, Song H, Cai J, Lu S (2021) Recent development of electrochemical nitrate reduction to ammonia: a mini review. Electrochem Commun 129:107094

    Article  CAS  Google Scholar 

  20. Aiken JD III, Lin Y, Fink RG (1996) A perspective on nanocluster catalysis: polyoxoanion and (n-C4H9) 4N+ stabilized Ir (0)∼ 300 nanocluster ‘soluble heterogeneous catalysts.’ J Mol Catal A: Chem 114(1–3):29–51

    Article  Google Scholar 

  21. Jeon K-W, Kim JK, Kim B-J, Jang W-J, Kang YC, Roh H-S (2023) Ultra-stable porous yolk-shell Ni catalysts for the steam reforming of methane with alkali poisoning. Chem Eng J 454:140060

    Article  CAS  Google Scholar 

  22. Thielbeer F, Donaldson K, Bradley M (2011) Zeta potential mediated reaction monitoring on nano and microparticles. Bioconjugate chem 22(2):144–150

    Article  CAS  Google Scholar 

  23. Antonels NC (2015) The evaluation of dendrimer encapsulated ruthenium nanoparticles, immobilised on silica, as catalysts in various catalytic reactions and the effect of ionic liquids on the catalytic activity. University of Johannesburg, South Africa

    Google Scholar 

  24. Kidwai M (2010) Nanoparticles in green catalysis. Handbook of Green Chemistry, Wiley-VCH Verlag GmbH & Co.

  25. Lokteva ES, Golubina EV (2019) Metal-support interactions in the design of heterogeneous catalysts for redox processes. Pure Appl Chem 91(4):609–631

    Article  CAS  Google Scholar 

  26. Rozita Y, Brydson R, Scott AJ (2010) An investigation of commercial gamma-Al2O3 nanoparticles. J Phy 241:012096

    Google Scholar 

  27. Lippits M, Boer Iwema R, Nieuwenhuys B (2009) A comparative study of oxidation of methanol on γ-Al2O3 supported group IB metal catalysts. Catal Today 145(1–2):27–33

    Article  CAS  Google Scholar 

  28. Pacchioni G, Freund H (2018) Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem Soc Rev 47(22):8474–8502

    Article  CAS  PubMed  Google Scholar 

  29. Gootzen JFE, Peeters PGJM, Dukers JMB, Leferts L, Visscher W, van Veen JAR (1997) The electrocatalytic reduction of NO3 on Pt, Pd and Pt + Pd electrodes activated with Ge. J Electroanal Chem 434(1–2):171–183

    Article  CAS  Google Scholar 

  30. Guo Y, Zhang R, Zhang S, Zhao Y, Yang Q, Huang Z, Dong B, Zhi C (2021) Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy Environ Sci 14(7):3938–3944

    Article  CAS  Google Scholar 

  31. Han Y, Zhang X, Cai W, Zhao H, Zhang Y, Sun Y, Hu Z, Li S, Lai J, Wang L (2021) Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. J Colloid Interface Sci 600:620–628

    Article  CAS  PubMed  Google Scholar 

  32. Lim J, Liu C-Y, Park J, Liu Y-H, Senftle TP, Lee SW, Hatzell MC (2021) Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal 11:7568–7577

    Article  CAS  Google Scholar 

  33. Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y (2022) Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew Chem Int Ed 61(19):e202202604

    Article  CAS  Google Scholar 

  34. Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan AWM, Xu L, Shi Y, Du Y, Hao W, Wong PK, Wang J, Dou S-X, Zhang L, Yu JC (2020) Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J Am Chem Soc 142:7036–7046

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Park J, Chen Y, Qiu Y, Cheng Y, Srivastava K, Gu S, Shanks BH, Roling LT, Li W (2021) Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal 11(14):8431–8442

    Article  CAS  Google Scholar 

  36. Zhu J-Y, Xue Q, Xue Y-Y, Ding Y, Li F-M, Jin P, Chen P, Chen Y (2020) Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl Mater Interfaces 12:14064–14070

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Ortiz EM, Goldsmith BR, Singh N (2021) Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum–ruthenium alloys. Catal Sci Technol 11(21):7098–7109

    Article  CAS  Google Scholar 

  38. Wang Z, Young SD, Goldsmith BR, Singh N (2021) Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J Catal 395:143–154

    Article  CAS  Google Scholar 

  39. Wang Y, Zhou W, Jia R, Yu Y, Zhang B (2020) Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed 59(13):5350–5354

    Article  CAS  Google Scholar 

  40. Ren T, Ren K, Wang M, Liu M, Wang Z, Wang H, Li X, Wang L, Xu Y (2021) Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chem Eng J 426:130759

    Article  CAS  Google Scholar 

  41. Wang C, Ye F, Shen J, Xue K-H, Zhu Y, Li C (2022) In situ loading of Cu2O active sites on island-like copper for efcient electrochemical reduction of nitrate to ammonia. ACS Appl Mater Interfaces 14(5):6680–6688

    Article  CAS  PubMed  Google Scholar 

  42. Fu W, Hu Z, Zheng Y, Su P, Zhang Q, Jiao Y, Zhou M (2022) Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface. Chem Eng J 433:133680

    Article  CAS  Google Scholar 

  43. Jiang G, Peng M, Hu L, Ouyang J, Lv X, Yang Z, Liang X, Liu Y, Liu H (2022) Electron-defcient Cuδ+ stabilized by interfacial Cu–O-Al bonding for accelerating electrocatalytic nitrate conversion. Chem Eng J 435:134853

    Article  CAS  Google Scholar 

  44. Hu T, Wang C, Wang M, Li CM, Guo C (2021) Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal 11:14417–14427

    Article  CAS  Google Scholar 

  45. Hu Q, Qin Y, Wang X, Wang Z, Huang X, Zheng H, Gao K, Yang H, Zhang P, Shao M (2021) Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ Sci 14:4989–4997

    Article  CAS  Google Scholar 

  46. Fu X, Zhao X, Hu X, He K, Yu Y, Li T, Tu Q, Qian X, Yue Q, Wasielewski MR, Kang Y (2020) Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl Mater Today 19:100620

    Article  Google Scholar 

  47. Wang H, Mao Q, Ren T, Zhou T, Deng K, Wang Z, Li X, Xu Y, Wang L (2021) Synergism of interfaces and defects: Cu/oxygen vacancy-rich Cu-Mn3O4 heterostructured ultrathin nanosheet arrays for selective nitrate electroreduction to ammonia. ACS Appl Mater Interfaces 13(37):44733–44741

    Article  CAS  PubMed  Google Scholar 

  48. Zhong W, Gong Z, He Z, Zhang N, Kang X, Mao X, Chen Y (2023) Modulating surface oxygen species via facet engineering for efficient conversion of nitrate to ammonia. J Energy Chem 78:211–221

    Article  CAS  Google Scholar 

  49. Wang J, Cai C, Wang Y, Yang X, Wu D, Zhu Y, Li M, Gu M, Shao M (2021) Electrocatalytic reduction of nitrate to ammonia on lowcost ultrathin CoOx nanosheets. ACS Catal 11(24):15135–15140

    Article  CAS  Google Scholar 

  50. Deng X, Yang Y, Wang Y, Fu XZ, Luo JL (2021) Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A cm−2. Adv Sci 8:2004523

    Article  CAS  Google Scholar 

  51. Yu Y, Wang C, Yu Y, Wang Y, Zhang B (2020) Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci China Chem 63:1469–1476

    Article  CAS  Google Scholar 

  52. Ye S, Chen Z, Zhang G, Chen W, Peng C, Yang X, Zheng L, Li Y, Ren X, Cao H, Xue D, Qiu J, Zhang Q, Liu J (2022) Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ Sci 15:760–770

    Article  CAS  Google Scholar 

  53. Li Z, Wen G, Liang J, Li T, Luo Y, Kong Q, Shi X, Asiri AM, Liu Q, Sun X (2021) High-efciency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy flm. Chem Commun 57(76):9720–9723

    Article  CAS  Google Scholar 

  54. Hong QL, Zhou J, Zhai QG, Jiang YC, Hu MC, Xiao X, Li SN, Chen Y (2021) Cobalt phosphide nanorings towards efcient electrocatalytic nitrate reduction to ammonia. Chem Commun 57(88):11621–11624

    Article  CAS  Google Scholar 

  55. Zhang H, Wang G, Wang C, Liu Y, Yang Y, Wang C, Jiang W, Fu L, Xu J (2022) CoP nanowires on carbon cloth for electrocatalytic NOx reduction to ammonia. J Electroanal Chem 910:116171

    Article  CAS  Google Scholar 

  56. Yao Q, Chen J, Xiao S, Zhang Y, Zhou X (2021) Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl Mater Interfaces 13(26):30458–30467

    Article  CAS  PubMed  Google Scholar 

  57. Huo S, Yang S, Niu Q, Yang F, Song L (2020) Synthesis of functional Ni2P/CC catalyst and the robust performances in hydrogen evolution reaction and nitrate reduction. Int J Hydrog Energy 45(7):4015–4025

    Article  CAS  Google Scholar 

  58. Wang Y, Zhang L, Niu Y, Fang D, Wang J, Su Q, Wang C (2021) Boosting NH3 production from nitrate electroreduction via electronic structure engineering of Fe3C nanofakes. Green Chem 23(19):7594–7608

    Article  CAS  Google Scholar 

  59. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B (2020) Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal 10:3533–3540

    Article  CAS  Google Scholar 

  60. Wan X, Guo W, Dong X, Wu H, Sun X, Chu M, Han S, Zhai J, Xia W, Jia S, He M, Han B (2022) Boosting nitrate electroreduction to ammonia on NbOx via constructing oxygen vacancies. Green Chem 24(3):1090–1095

    Article  CAS  Google Scholar 

  61. He W, Zhang J, Dieckhöfer S, Varhade S, Brix AC, Lielpetere A, Seisel S, Junqueira JRC, Schuhmann W (2022) Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat Commun 13(1):1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam D-H, Tan C-S, Ding Y, Wu J, Lum Y, Dinh C-T, Sinton D, Zheng G, Sargent EH (2020) Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J Am Chem Soc 142:5702–5708

    Article  CAS  PubMed  Google Scholar 

  63. Mattarozzi L, Cattarin S, Comisso N, Guerriero P, Musiani M, VázquezGómez L, Verlato E (2013) Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim Acta 89:488–496

    Article  CAS  Google Scholar 

  64. Wang Y, Liu C, Zhang B, Yu Y (2020) Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Sci Chin Mat 63(12):2530–2538

    Article  CAS  Google Scholar 

  65. Cheng N, Zhang L, Doyle-Davis K, Sun X (2019) Single-atom catalysts: from design to application. Electrochem Energy Rev 2(4):539–573

    Article  Google Scholar 

  66. Li J, Yue M, Wei Y, Li J (2022) Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 409:139835

    Article  CAS  Google Scholar 

  67. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to Nanoclusters and nanoparticles. Chem Rev 118(10):4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37(10):2163–2171

    Article  PubMed  Google Scholar 

  69. Waikar J, Pawar H, More P (2019) Review on Co oxidation by noble and non-noble metal based catalyst. Catal Green Chem Eng 2(1):11–24

    Article  CAS  Google Scholar 

  70. Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts Chem Res 46(8):1740–1748

    Article  CAS  Google Scholar 

  71. Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J (2020) Single-atom catalysts across the periodic table. Chem Rev 120(21):11703–11809

    Article  CAS  PubMed  Google Scholar 

  72. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7):1242–1264

    Article  CAS  Google Scholar 

  73. Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T (2020) Single-atom catalysts based on the metal–oxide interaction. Chem Rev 120(21):11986–12043

    Article  CAS  PubMed  Google Scholar 

  74. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y (2020) Chemical synthesis of single atomic site catalysts. Chem Rev 120(21):11900–11955

    Article  CAS  PubMed  Google Scholar 

  75. Wang S, Gao H, Li L, Hui KS, Dinh DA, Wu S, Kumar S, Chen F, Shao Z, Hui KN (2022) High-throughput identification of highly active and selective single-atom catalysts for electrochemical ammonia synthesis through nitrate reduction. Nano Energy 100:107517

    Article  CAS  Google Scholar 

  76. Wu J, Li J-H, Yu Y-X (2021) Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP. J Phys Chem Lett 12(16):3968–3975

    Article  CAS  PubMed  Google Scholar 

  77. Wu Z-Y, Karamad M, Yong X, Huang Q, Cullen DA, Zhu P, Xia C, Xiao Q, Shakouri M, Chen F-Y, Kim JY, Xia Y, Heck K, Hu Y, Wong MS, Li Q, Gates I, Siahrostami S, Wang H (2021) Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 12:2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen G-F, Yuan Y, Jiang H, Ren S-Y, Ding L-X, Ma L, Wu T, Lu J, Wang H (2020) Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat Energy 5(8):605–613

    Article  CAS  Google Scholar 

  79. Gao Z, Lai Y, Tao Y, Xiao L, Zhang L, Luo F (2021) Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent Sci 7(6):1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Chen X, Wang W, Yin L, Crittenden JC (2022) Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl Catal B: Environ 310:121346

    Article  CAS  Google Scholar 

  81. Wang S, Li L, Hui KS, Dinh DA, Lu Z, Zhang Q, Hui KN (2023) Non−noble single−atom alloy for electrocatalytic nitrate reduction using hierarchical high−throughput screening. Nano Energy 113:108543

    Article  CAS  Google Scholar 

  82. Cai J, Wei Y, Cao A, Huang J, Jiang Z, Lu S, Zang S-Q (2022) Electrocatalytic nitrate-to-ammonia conversion with ~100% Faradaic efficiency via single-atom alloying. Appl Catal B: Environ 316:121683

    Article  CAS  Google Scholar 

  83. Chen K, Ma Z, Li X, Kang J, Ma D, Chu K (2023) Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv Funct Mater 33:2209890

    Article  CAS  Google Scholar 

  84. Sun X, Wang R, Su D (2013) Research progress in metal-free carbon-based catalysts. Chin J Catal 34(3):508–523

    Article  CAS  Google Scholar 

  85. Jiang H-F, Wang Y-G, Liu H-L, Liu P (2004) Application of non-metallic organocatalysts in organic chemistry. Chin J Org Chem 24(12):1513–1531

    CAS  Google Scholar 

  86. Yang G, Ma Y, Xu J (2004) Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J Am Chem Soc 126(34):10542–10543

    Article  CAS  PubMed  Google Scholar 

  87. Paradies J (2013) Frustrated Lewis pair catalyzed hydrogenations. Synlett 24(07):777–780

    Article  CAS  Google Scholar 

  88. Li W, Wang J, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148(1–2):81–87

    Article  CAS  Google Scholar 

  89. Li X, Wang Y, Kang L, Zhu M, Dai B (2014) A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J Catal 311:288–294

    Article  CAS  Google Scholar 

  90. Marinoiu A, Raceanu M, Carcadea E, Varlam M, Soare A, Stefanscu I (2017) Doped graphene as non-metallic catalyst for fuel cells. Mater Sci 23(2):108–113

    Google Scholar 

  91. Mei R, Ma L, An L, Wang F, Xi J, Sun H, Luo Z, Wu Q (2017) Layered spongy-like O-doped G-C3N4: an efficient non-metal oxygen reduction catalyst for alkaline fuel cells. J Electrochem Soc 164(4):F354–F363

    Article  CAS  Google Scholar 

  92. Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48(21):10001–10017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao Y, Yu H, Peng F, Wang H (2014) Selective Allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catal 4(5):1617–1625

    Article  CAS  Google Scholar 

  94. Figueiredo J, Pereira M, Freitas M, Órfão J (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389

    Article  CAS  Google Scholar 

  95. Figueiredo JL, Pereira MF (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150(1–2):2–7

    Article  CAS  Google Scholar 

  96. Li X, Gu Y, Wu S, Chen S, Quan X, Yu H (2021) Selective reduction of nitrate to ammonium over charcoal electrode derived from natural wood. Chemosphere 285:131501

    Article  CAS  PubMed  Google Scholar 

  97. Cheng L, Ma T, Zhang B, Huang L, Guo W, Hu F, Zhu H, Wang Z, Zheng T, Yang D-T, Siu C-K, Liu Q, Ren Y, Xia C, Tang BZ, Ye R (2022) Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction. ACS Catal 12(19):11639–11650

    Article  CAS  Google Scholar 

  98. Li R, Gao T, Wang P, Qiu W, Liu K, Liu Y, Jin Z, Li P (2023) The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Appl Catal B: Environ 331:122677

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the student support from NJIT and partially summer research support from NSF CBET-1804949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, KW., Huo, S., Espinosa, B.I. et al. Recent Development of Catalysts for the Nitrate Reduction Reaction: Electrochemical Solution to Produce Ammonia. Top Catal (2024). https://doi.org/10.1007/s11244-024-01933-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-01933-9

Keywords

Navigation