Skip to main content
Log in

Arsenic and Environment: A Systematic Review on Arsenic Sources, Uptake Mechanism in Plants, Health Hazards and Remediation Strategies

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Arsenic, a metalloid that exists by nature, reaches the earth either by natural or anthropogenic events and is considered an emerging pollutant. The existence of arsenic in soil systems is a fate to the environment since it is mobile and being transported to other systems because of its bioavailability and speciation process. Arsenic transformation in the soil and its thorough understanding of how it enters plant systems are crucial. Notably, transporters are responsible for most of the arsenic that enters the plant system. Consumption of crops or animals and drinking water polluted with arsenic are the prime factors in transmitting arsenic to people. Severe adverse effects on humans arise as an outcome of long-term contact with arsenic-rich foodstuff and water. An effort has been made to outline the several sources and their dynamics in the surroundings and health impact on humans in this review. In addition, various strategies have been practiced to remove arsenic in the soil and water systems is also addressed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  1. Zhao F-J, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  2. Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20:7728–7739

    Article  CAS  Google Scholar 

  3. Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. Enhancing Cleanup of Environmental Pollutants: Volume 2: Non-Biological Approaches 2:97–140

    Article  Google Scholar 

  4. Asere TG, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Adsorption of as (III) versus as (V) from aqueous solutions by cerium-loaded volcanic rocks. Environ Sci Pollut Res 24:20446–20458

    Article  CAS  Google Scholar 

  5. Dutré V, Vandecasteele C (1995) Solidification/stabilisation of arsenic-containing waste: leach tests and behaviour of arsenic in the leachate. Waste Manage 15(1):55–62

    Article  Google Scholar 

  6. Bowell R (1994) Sulphide oxidation and arsenic speciation in tropical soils. Environ Geochem Health 16:84–84

    Article  CAS  PubMed  Google Scholar 

  7. Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. Green technologies and environmental sustainability:395–407

  8. Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31(1):9–18

    Article  CAS  Google Scholar 

  9. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  PubMed  Google Scholar 

  10. Jedynak L, Kowalska J, Leporowska A (2012) Arsenic uptake and phytochelatin synthesis by plants from two arsenic-contaminated sites in Poland. Pol J Environ Stud 21:1629–1633

    CAS  Google Scholar 

  11. Langdon CJ, Piearce TG, Meharg AA, Semple KT (2003) Interactions between earthworms and arsenic in the soil environment: a review. Environ Pollut 124(3):361–373

    Article  CAS  PubMed  Google Scholar 

  12. Hanh HT, Kim J-Y, Bang S, Kim K-W (2010) Sources and fate of as in the environment. Geosystem Eng 13(1):35–42

    Article  Google Scholar 

  13. Onishi H (1969) Chap. 33: Arsenic. Wedepohl, KH, Handbook of Geochemistry. Springer-Verlag. us Department of Legacy, New York

    Google Scholar 

  14. Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48(3):1549–1556

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Panda S, Upadhyay R, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196(3):161–174

    Article  CAS  Google Scholar 

  16. Liao X-Y, Chen T-B, Xie H, Liu Y-R (2005) Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31(6):791–798

    Article  CAS  PubMed  Google Scholar 

  17. Eisler R (2004) Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol :133–165

  18. Hasanuzzaman M, Fujita M (2013) Heavy metals in the environment: current status, toxic effects on plants and phytoremediation. Phytotechnologies—Remediation of environmental contaminants Edited by NA Anjum, ME Pereira, I Ahmad, AC Duarte, S Umar, and NA Khan CRC Press, Boca Raton, USA:7–73

  19. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. Crop production and global environmental issues:1–25

  20. Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1:35–46

    Article  CAS  Google Scholar 

  21. Mahimairaja S, Bolan N, Adriano D, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  22. Rieuwerts J, Farago M, Thornton I, Ashmore M, Fowler D, Nemitz E, Hall J, Kodz D, Lawlor A, Tipping E (1999) Critical loads of metals in UK soils: an overview of current research. AA Balkema

  23. Vaxevanidou K, Giannikou S, Papassiopi N (2012) Microbial arsenic reduction in polluted and unpolluted soils from Attica. Greece J Hazard Mater 241:307–315

    Article  PubMed  Google Scholar 

  24. Bhumbla D, Keefer R (1994) Arsenic mobilization and bioavailability in soils

  25. Gulz PA, Gupta S-K, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  26. Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peryea FJ (2001) Gardening on lead-and arsenic-contaminated soils

  28. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  29. Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116(1):29–35

    Article  CAS  Google Scholar 

  30. Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  31. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate‐tolerant Holcus lanatus. Plant J 45(6):917–929

    Article  CAS  PubMed  Google Scholar 

  33. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci 103(14):5413–5418

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  35. Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  36. Ma JF, Yamaji N, Tamai K, Mitani N (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145(3):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li R-Y, Ago Y, Liu W-J, Mitani N, Feldmann SP Jr, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4(3):197–203

    Article  CAS  Google Scholar 

  39. Jia Y, Huang H, Chen Z, Zhu Y-G (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48(2):1001–1007

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Li H, Man YB, Ye Z, Wu C, Wu S, Wong MH (2013) Do arbuscular mycorrhizal fungi affect arsenic accumulation and speciation in rice with different radial oxygen loss? J Hazard Mater 262:1098–1104

    Article  CAS  PubMed  Google Scholar 

  41. Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  42. Gupta D, Inouhe M, Rodríguez-Serrano M, Romero-Puertas M, Sandalio L (2013) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90(6):1987–1996

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Sun Y, Li Z, Guo B, Chu G, Wei C, Liang Y (2008) Arsenic mitigates cadmium toxicity in rice seedlings. Environ Exp Bot 64(3):264–270

    Article  CAS  Google Scholar 

  44. Li C-x, Feng S-l, Yun S, Jiang L-n, Lu X-y, Hou X-l (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19(6):725–732

    Article  CAS  Google Scholar 

  45. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72(4):1102–1110

    Article  CAS  PubMed  Google Scholar 

  46. Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) Is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  47. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72(2):626–634

    Article  CAS  PubMed  Google Scholar 

  48. Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  49. Shaibur MR, Kawai S (2009) Effect of arsenic on visible symptom and arsenic concentration in hydroponic Japanese mustard spinach. Environ Exp Bot 67(1):65–70

    Article  CAS  Google Scholar 

  50. Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals. Ecotoxicol Environ Saf 73(6):1352–1361

    Article  CAS  PubMed  Google Scholar 

  51. Duquesnoy I, Champeau GM, Evray G, Ledoigt G, Piquet-Pissaloux A (2010) Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. C R Biol 333(11–12):814–824

    Article  CAS  PubMed  Google Scholar 

  52. Jin J-W, Xu Y-F, Huang Y-F (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotechnol 9(11):1619–1627

    Article  CAS  Google Scholar 

  53. Raj A, Pandey AK, Sharma Y, Khare P, Srivastava PK, Singh N (2011) Metabolic adaptation of Pteris vittata L. gametophyte to arsenic induced oxidative stress. Bioresour Technol 102(20):9827–9832

    Article  CAS  PubMed  Google Scholar 

  54. Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  CAS  PubMed  Google Scholar 

  55. Vromman D, Lutts S, Lefèvre I, Somer L, De Vreese O, Šlejkovec Z, Quinet M (2013) Effects of simultaneous arsenic and iron toxicities on rice (Oryza sativa L.) development, yield-related parameters and as and Fe accumulation in relation to as speciation in the grains. Plant Soil 371:199–217

    Article  CAS  Google Scholar 

  56. Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) Plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  57. Talukdar D (2013) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  58. Talukdar D (2013) Arsenic exposure modifies Fusarium wilt tolerance in grass pea (Lathyrus sativus L.) genotypes through modulation of antioxidant defense response. J Plant Sci Mol Breed 2(4):12

    Google Scholar 

  59. Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163

    Article  CAS  PubMed  Google Scholar 

  60. Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad M, Ozturk M (2013) Enhancing plant productivity under salt stress: relevance of poly-omics. Salt stress in plants: signalling, omics and adaptations:113–156

  61. Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67(6):1072–1079

    Article  CAS  ADS  Google Scholar 

  62. Juzl M, Stefl M (2002) The effect of leaf area index on potatoes yield in soils contaminated by some heavy metals. Rostl výroba 48(7):298–306

    Google Scholar 

  63. Mahmud R, Inoue N, Kasajima S-y, Shaheen R (2007) Effect of Soil Arsenic on Yield and As an d P Distribution Pattern among Plant Organs of Buckwheat and Castor Oil Plant. In: Proceedings of the 10th International Symposium on Buckwheat. Section D Physiology and Cultivation, Citeseer

  64. Choudhury R, Islam ST, Alam R, Sen R, Hasan GJ, Chowdhury MAI (2009) Effect of Arsenic contaminated irrigation water on the cultivation of Red Amaranth. Am -Eurasian j sci res 4(1):14–19

    CAS  Google Scholar 

  65. Zhang W, Liu D, Tian J, He F (2009) Toxicity and accumulation of arsenic in wheat (Triticum aestivum L.) varieties of China. Phyton (Buenos Aires) 78(2):147–154

    Google Scholar 

  66. Islam M, Jahiruddin M Effects of arsenic and its interaction with phosphorus on yield and arsenic accumulation in rice. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, 2010. pp 1–6

  67. Sultana R, Rahman A, Kibria KQ, Islam MS, Haque M (2012) Effect of arsenic contaminated irrigation water on growth, yield and nutrient accumulation of Vigna Radiata. Indian J Innovations Dev 1(9):132–140

    Google Scholar 

  68. Namgay T, Singh B, Singh B (2010) Plant availability of arsenic and cadmium as influenced by biochar application to soil. In: 19th world congress of soil science,

  69. Liu Q, Zheng C, Hu C, Tan Q, Sun X, Su J (2012) Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L) and Rape (Brassica napus). Plant Soil Environ 58(1):22–27

    Article  CAS  Google Scholar 

  70. Azad M, Mondal A, Hossain M, Moniruzzaman M (2012) Effect of arsenic amended irrigation water on growth and yield of BR-11 rice (Oryza sativa L.) grown in open field Gangetic soil condition in Rajshahi. Int j Environ sci Nat Resour 5(1):55–59

    Google Scholar 

  71. Ci X, Liu H, Hao Y, Zhang J, Peng L, Dong S (2012) Arsenic distribution, species, and its effect on maize growth treated with arsenate. J Integr Agric 11(3):416–423

    Article  CAS  Google Scholar 

  72. Shahid M, Pinelli E, Pourrut B, Dumat C (2014) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289

    Article  CAS  Google Scholar 

  73. Shahid M, Rafiq M, Niazi NK, Dumat C, Shamshad S, Khalid S, Bibi I (2017) Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environ Sci Pollut Res 24:16097–16106

    Article  CAS  Google Scholar 

  74. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281

    Article  CAS  PubMed  Google Scholar 

  75. Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L (2017) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228:1–12

    Article  CAS  ADS  Google Scholar 

  76. Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA (2017) Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. Int J Phytoremediation 19(7):670–678

    Article  CAS  PubMed  Google Scholar 

  77. Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145

    Article  CAS  PubMed  Google Scholar 

  78. Mehmood T, Bibi I, Shahid M, Niazi NK, Murtaza B, Wang H, Ok YS, Sarkar B, Javed MT, Murtaza G (2017) Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J Geochem Explor 178:83–91

    Article  CAS  Google Scholar 

  79. Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  PubMed  Google Scholar 

  80. Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L). Plant Physiol Biochem 104:266–277

    Article  CAS  PubMed  Google Scholar 

  81. Iriel A, Dundas G, Cirelli AF, Lagorio MG (2015) Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Chemosphere 119:697–703

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  CAS  PubMed  Google Scholar 

  83. Ahmad MA, Gaur R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217:141–148

    Article  PubMed  Google Scholar 

  84. Degola F, Fattorini L, Bona E, Sprimuto CT, Argese E, Berta G, di Toppi LS (2015) The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis Mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. Plant Physiol Biochem 92:11–18

    Article  CAS  PubMed  Google Scholar 

  85. Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7(1):3592

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  86. Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    Article  CAS  PubMed  Google Scholar 

  87. Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E (2016) Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean. Plant Physiol Biochem 103:45–52

    Article  CAS  PubMed  Google Scholar 

  88. Srivastava S, Singh N (2014) Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter Sp. Ecol Eng 70:146–153

    Article  Google Scholar 

  89. Silveira NM, de Oliveira JA, Ribeiro C, Canatto RA, Siman L, Cambraia J, Farnese F (2015) Nitric oxide attenuates oxidative stress induced by arsenic in lettuce (Lactuca sativa) leaves. Water Air Soil Pollut 226:1–9

    Article  Google Scholar 

  90. Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163(9):927–936

    Article  CAS  PubMed  Google Scholar 

  91. Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci :525–532

  92. EFSA (2014) Dietary exposure to inorganic arsenic in the European population: European Food Safety Authority. EFSA J 12:3597

    Google Scholar 

  93. EPA I (2014) Drinking water parameters microbiological, chemical and indicator parameters in the 2014 drinking Water regulations. Johnstown Castle Estate Wexford. Ireland

  94. Organization WH (2019) Preventing Disease through healthy environments: exposure to arsenic: a major public health concern. World Health Organization

  95. Shaji E, Santosh M, Sarath K, Prakash P, Deepchand V, Divya B (2021) Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front 12(3):101079

    Article  CAS  Google Scholar 

  96. Phan K, Sthiannopkao S, Kim K-W, Wong MH, Sao V, Hashim JH, Yasin MSM, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44(19):5777–5788

    Article  CAS  PubMed  Google Scholar 

  97. Maity JP, Nath B, Kar S, Chen C-Y, Banerjee S, Jean J-S, Liu M-Y, Centeno JA, Bhattacharya P, Chang CL (2012) Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study. Environ Geochem Health 34:563–574

    Article  CAS  PubMed  Google Scholar 

  98. Das H, Mitra AK, Sengupta P, Hossain A, Islam F, Rabbani G (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30(3):383–387

    Article  CAS  PubMed  Google Scholar 

  99. Chatterjee D, Halder D, Majumder S, Biswas A, Nath B, Bhattacharya P, Bhowmick S, Mukherjee-Goswami A, Saha D, Hazra R (2010) Assessment of arsenic exposure from groundwater and rice in Bengal Delta Region, West Bengal, India. Water Res 44(19):5803–5812

    Article  CAS  PubMed  Google Scholar 

  100. Samal AC, Kar S, Bhattacharya P, Santra SC (2011) Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. J Environ Sci Health Part A 46(11):1259–1265

    Article  CAS  Google Scholar 

  101. Mandal BK, Chowdhury TR, Samanta G, Basu GK, Chowdhury PP, Chanda CR, Lodh D, Karan NK, Dhar RK, Tamili DK (1996) Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. Curr Sci :976–986

  102. Maharjan M, Watanabe C, Ahmad SA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg 73(2):477–479

    Article  CAS  PubMed  Google Scholar 

  103. Edition F (2011) Guidelines for drinking-water quality. WHO Chron 38(4):104–108

    Google Scholar 

  104. Haider A, Ullah MH, Khan ZH, Kabir F, Abedin KM (2014) Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption. Opt Laser Technol 56:299–303

    Article  CAS  ADS  Google Scholar 

  105. Hashem MA, Jodai T, Ohira S-I, Wakuda K, Toda K (2011) High sensitivity arsenic analyzer based on liquid-reagent-free hydride generation and chemiluminescence detection for on-site water analysis. Anal Sci 27(7):733–733

    Article  PubMed  Google Scholar 

  106. Yogarajah N, Tsai SS (2015) Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics. Environ Sci Water Res Technol 1(4):426–447

    Article  CAS  Google Scholar 

  107. Behari JR, Prakash R (2006) Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA). Chemosphere 63(1):17–21

    Article  CAS  PubMed  ADS  Google Scholar 

  108. Gomez-Ariza J, Sánchez‐Rodas D, Beltran R, Corns W, Stockwel P (1998) Evaluation of atomic fluorescence spectrometry as a sensitive detection technique for arsenic speciation. Appl Organomet Chem 12(6):439–447

    Article  CAS  Google Scholar 

  109. Fiket Ž, Roje V, Mikac N, Kniewald G (2007) Determination of arsenic and other trace elements in bottled waters by high resolution inductively coupled plasma mass spectrometry. Croat Chem Acta 80(1):91–100

    CAS  Google Scholar 

  110. Klaue B, Blum JD (1999) Trace analyses of arsenic in drinking water by inductively coupled plasma mass spectrometry: high resolution versus hydride generation. Anal Chem 71(7):1408–1414

    Article  CAS  PubMed  Google Scholar 

  111. Council N (1999) Arsenic in drinking water. National Research Council, Ottawa, ON, Canada

    Google Scholar 

  112. Rupasinghe T, Cardwell TJ, Cattrall RW, Potter ID, Kolev SD (2004) Determination of arsenic by pervaporation-flow injection hydride generation and permanganate spectrophotometric detection. Anal Chim Acta 510(2):225–230

    Article  CAS  Google Scholar 

  113. Kolya H, Hashitsume K, Kang C-W (2021) Recent advances in colorimetric detection of arsenic using metal-based nanoparticles. Toxics 9(6):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kundu S, Ghosh SK, Nath S, Panigrahi S, Praharaj S, Basu S, Pal T (2005) Ion-associate of arsenic (V)-salicylic acid chelate with methylene blue in toluene: application for arsenic quantification

  115. Nath P, Arun RK, Chanda N (2014) A paper based microfluidic device for the detection of arsenic using a gold nanosensor. RSC Adv 4(103):59558–59561

    Article  CAS  ADS  Google Scholar 

  116. Sharma RD, Joshi S, Amlathe S (2012) Quantitative determination and development of sensing devices via a new reagent system for arsenic. Anal Chem 11:342–346

    CAS  Google Scholar 

  117. Chen S-Y, Wei W, Yin B-C, Tong Y, Lu J, Ye B-C (2019) Development of a highly sensitive whole-cell biosensor for arsenite detection through engineered promoter modifications. ACS Synth Biol 8(10):2295–2302

    Article  CAS  PubMed  Google Scholar 

  118. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  CAS  PubMed  Google Scholar 

  119. Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25(8):1414–1419

    Article  CAS  ADS  Google Scholar 

  120. Sundaram S, Rathinasabapathi B, Ma LQ, Rosen BP (2008) An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem 283(10):6095–6101

    Article  CAS  PubMed  Google Scholar 

  121. Choong TS, Chuah T, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1–3):139–166

    Article  CAS  Google Scholar 

  122. Shih M-C (2005) An overview of arsenic removal by pressure-drivenmembrane processes. Desalination 172(1):85–97

    Article  CAS  Google Scholar 

  123. Oehmen A, Viegas R, Velizarov S, Reis MA, Crespo JG (2006) Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination 199(1–3):405–407

    Article  CAS  Google Scholar 

  124. Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289(1–3):97–121

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

The present work is not supported by any Funding agency.

Author information

Authors and Affiliations

Authors

Contributions

SR – manuscript writing, editing, and proofreading, VR - manuscript writing, editing, and proofreading, AS - manuscript writing, editing, and proofreading, SV - manuscript writing, editing and proofreading, MM - manuscript writing, editing and proofreading.

Corresponding author

Correspondence to Sasireka Rajendran.

Ethics declarations

Ethics Approval

Ethical committee approval is not needed for this present study.

Consent for Publication

I give my consent for the publication of details in the journal. The figures used in this manuscript are original and it does not require any permission from owners.

Conflict of Interest

The authors declare that there is no conflict of interest.

Consent to Participate

This present study does not involve any living materials. Consent to participate does not apply to this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, S., Rathinam, V., Sharma, A. et al. Arsenic and Environment: A Systematic Review on Arsenic Sources, Uptake Mechanism in Plants, Health Hazards and Remediation Strategies. Top Catal 67, 325–341 (2024). https://doi.org/10.1007/s11244-023-01901-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01901-9

Keywords

Navigation