Skip to main content

Advertisement

Log in

Greener Assembly of Nano Catalysts and Sustainable Applications of Magnetically Retrievable and Plasmonic Nano Catalysts

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Since ages, catalysts have played a pivotal role in accelerating the production and lowering the cost of a plethora of industrially important commodities. The latest in the scenario are nanocatalysts, which offer a wide array of advantages ranging from improved reaction rates to higher rates of recyclability. However, factors such as stability and support systems must be fine-tuned to achieve maximum efficiency. In accordance with the principle of sustainability, green synthesis methods have propelled the development of a range of nanocatalysts that can be applied in various domains, such as the food industry and biofuel production. Simultaneously, heterogeneous catalysis is gaining more attention globally, primarily due to the ease of recoverability of the nanocatalysts and in this context, magnetically retrievable nanocatalysts are indeed a boon for the green synthesis and sustainable production. Nanocomposites combining plasmonic and catalytic components with noble metal nanoparticles (Au and Ag) and doped semiconductor nanostructures have gained interest in recent years owing to their utility in multiple sectors by virtue of their ability to convert sunlight to chemical energy. The current review describes some methods for the synthesis of such nanocatalysts and their applications in diverse domains.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Fierascu RC, Ortan A, Avramescu SM, Fierascu I (2019) Phyto-nanocatalysts: green synthesis, characterization, and applications. Molecules. https://doi.org/10.3390/molecules24193418

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cole-Hamilton DJ, Tooze RP (2006) Catalyst separation, recovery and recycling. chemistry and process design. Catal Metal Complex 30:1–8. https://doi.org/10.1007/1-4020-4087-3

    Article  CAS  Google Scholar 

  3. Somwanshi SB, Somvanshi SB, Kharat PB (2020) Nanocatalyst: a brief review on synthesis to applications. J Phys: Conf Ser 1644(1):012046

    Google Scholar 

  4. Sharma RK, Bandichhor R, Mishra V, Sharma S, Yadav S, Mehta S, Arora B, Rana P, Dutta S, Solanki K (2023) Advanced metal oxide-based nanocatalysts for the oxidative synthesis of fine chemicals. Mater Adv 4(8):1795–1830

    Article  CAS  Google Scholar 

  5. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2019.101174

    Article  Google Scholar 

  6. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J Hazard Mater 5(401):123401

    Article  Google Scholar 

  7. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. https://doi.org/10.1063/1.4945168

  8. Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod 170:1536–1543

    Article  CAS  Google Scholar 

  9. Amer M, Akl A (2021) Green synthesis of copper nanoparticles by citrus limon fruits extract characterization and antibacterial activity. Chem Int 7(1):1–8

    CAS  Google Scholar 

  10. Jamzad M, Bidkorpeh MK (2020) Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostruct Chem 10:193–201

    Article  CAS  Google Scholar 

  11. Yousaf H, Mehmood A, Ahmad KS, Raffi M (2020) Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater Sci Eng, C 112:110901

    Article  CAS  Google Scholar 

  12. Kazemi M (2020) Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. Synth Commun 50(13):1899–1935

    Article  CAS  Google Scholar 

  13. Kargar S, Elhamifar D, Zarnegaryan A (2020) Core–shell structured Fe3O4@SiO2-supported IL/[Mo6O19]: a novel and magnetically recoverable nanocatalyst for the preparation of biologically active dihydropyrimidinones. J Phys Chem Solids 146:109601

    Article  CAS  Google Scholar 

  14. García-Quintero A, Palencia M (2021) A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with nanotechnology. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148524

    Article  PubMed  Google Scholar 

  15. Benelli G (2019) Green synthesis of nanomaterials. Nanomaterials 9:1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huston M, DeBella M, DiBella M, Gupta A (2021) Green synthesis of nanomaterials. Nanomaterials 11:2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atrak K, Ramazani A, Fardood ST (2019) Green synthesis of Zn0.5Ni0.5AlFeO4 magnetic nanoparticles and investigation of their photocatalytic activity for degradation of reactive blue 21 dye. Environl Technol 41(21):2760–2770

    Article  Google Scholar 

  18. Nikić J, Tubić A, Watson M, Maletić S, Šolić M, Majkić T, Agbaba J (2019) Arsenic removal from water by green synthesized magnetic nanoparticles. Water 11(12):2520

    Article  Google Scholar 

  19. Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi H, Ranjbar R, Seifalian A, Yazdanian A (2022) The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg Chem Appl 3(2022):2311910

    Google Scholar 

  20. Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Islam S, Faizo NL, Khandaker MU, Islam MN, Emran TB, Bilal M (2021) Biological synthesis of nanocatalysts and their applications. Catalysts 11:1494

    Article  CAS  Google Scholar 

  21. Kang S, He M, Yin C, Xu H, Cai Q, Wang Y, Cui L (2020) Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem 22:1934–1943

    Article  CAS  Google Scholar 

  22. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370

    Article  PubMed  Google Scholar 

  23. Sun T, Lu R, Long Y, Li Q, Wu J, Fan G (2021) Bamboo fungus-derived magnetic porous carbon encapsulated nickel stabilized Rh nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2021.07.222

    Article  Google Scholar 

  24. Shi G, Li Y, Xi G, Xu Q, He Z, Liu Y, Zhang J, Cai J (2017) Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J Hazard Mater 5(335):170–177

    Article  Google Scholar 

  25. Yu J, Zhang L, Liu Q, Qi X, Ji Y, Kim BS (2015) Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. Asian Pac J Trop Biomed 5(7):555–560

    Article  Google Scholar 

  26. Ranjitha VR, Rai VR (2017) Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 7:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656

    Article  CAS  PubMed  Google Scholar 

  28. Moavi J, Buzzer F, Sayahi MH (2021) Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci Rep 11:6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Priya N, Kaur K, Sidhu AK (2021) Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol 3:655062

    Article  Google Scholar 

  30. Sivakami M, Devi KR, Renuka R, Thilagavathi T (2020) Green synthesis of magnetic nanoparticles via Cinnamomum verum bark extract for biological application. J Environ Chem Eng 8(5):104420

    Article  Google Scholar 

  31. Khalilzadeh MA, Tajik S, Beitollahi H, Venditti RA (2020) Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Ind Eng Chem Res 59:4219–4228

    Article  CAS  Google Scholar 

  32. Hossaini Z, Tabarsaei N, Khandan S, Valipour P, Ghorchibeigi M (2020) ZnO/Ag/Fe3O4 nanoparticles supported on carbon nanotubes employing Petasites hybridus rhizome water extract: A novel organometallic nanocatalyst for the synthesis of new naphthyridines. Appl Organometallic Chem 35:e6114

    Article  Google Scholar 

  33. Chutia R, Chetia B (2018) Biogenic CuFe2O4 magnetic nanoparticles as a green, reusable and excellent nanocatalyst for the acetylation reaction under solvent free conditions. Royal Soc Chem 42:15200–15206

    CAS  Google Scholar 

  34. Ghereghlou M, Esmaeili AA, Darroudi M (2021) Preparation of Fe3O4@C-dots as a recyclable magnetic nanocatalyst using Elaeagnus angustifolia and its application for the green synthesis of formamidines. Appl Organometall Chem. https://doi.org/10.1002/aoc.6387

    Article  Google Scholar 

  35. Xue Y, Karmakar B, AlSalem HS, Binkadem MS, Al-Goul ST, Bani-Fwaz MZ, El-Kott AF, Ageeli AM, Alsayegh AA, Batiha GE (2022) Green nanoarchitectonics of Cu/Fe3O4 nanoparticles using Helleborus niger extract towards an efficient nanocatalyst, antioxidant and anti-lung cancer agent. J Inorg Organomet Polym Mater 32:3585–3594

    Article  CAS  Google Scholar 

  36. Adimule V, Yallur BC, Pai MM, Batakurki SR, Nandi SS (2022) Biogenic synthesis of magnetic palladium nanoparticles decorated over reduced graphene oxide using piper betle petiole extract (Pd-rGO@Fe3O4 NPs) as heterogeneous hybrid nanocatalyst for applications in suzuki-miyaura coupling reactions of biphenyl compounds. Topics Catal 1:14

    Google Scholar 

  37. Esmaeili N, Mohammadi P, Abbazadeh M, Sheibani H (2019) Au nanoparticles decorated on magnetic nanocomposite (GO-Fe3O4/Dop/Au) as a recoverable catalyst for degradation of methylene blue and methyl orange in water. Int J Hydrog Energy 44(41):23002–23009

    Article  CAS  Google Scholar 

  38. Lakshminarayanan S, Shereen MF, Niraimathi KL, Brindha P, Arunmugam A (2021) One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Sci Rep 11:8643

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy, from physics to applications. Mater Today 16(10):375–386

    Article  CAS  Google Scholar 

  40. Alzahrani EA, Nabi A, Kamli MR, Albukhari SM, Althabaiti SA, Al-Harbi SA, Khan I, Malik MA (2023) Facile green synthesis of ZnO NPs and plasmonic Ag-supported ZnO nanocomposite for photocatalytic degradation of methylene blue. Water 15(3):384

    Article  CAS  Google Scholar 

  41. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veligeti R, Anireddy JS, Madhu RB, Bendi A, Praveen PL, Ramakrishna DS (2023) Solvent-free synthesis of acridone based dihydropyrazine derivatives using CuFe2O4 nanoparticles as heterogeneous catalyst: molecular docking and in-vitro studies as anticancer agents. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02638-4

    Article  Google Scholar 

  43. Kang N, Shen R, Li B, Fu F, Espuche B, Moya S, Salmon L, Pozzo JL, Astruc D (2023) Dramatic acceleration by visible light and mechanism of AuPd@ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production. J Mater Chem A. https://doi.org/10.1039/D2TA08396E

    Article  Google Scholar 

  44. Vishwanath R, Negi B (2021) Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100205

    Article  Google Scholar 

  45. Keabadile OB, Aremu AO, Alugoke SE (2020) Green and traditional synthesis of copper oxide nanoparticles—comparative study. Nanomaterials 10(12):2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jain PK, Huang X, El-Sayed IH (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118. https://doi.org/10.1007/s11468-007-9031-1

    Article  CAS  Google Scholar 

  47. Kreibig U, Vollmer M (1995) In: Optical properties of metal clusters, Vol. 25. Springer, Berlin

  48. Verma P, Mori K, Kuwahara Y, Raja R, Yamashita H (2020) Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials. Mater Adv 3:880–906. https://doi.org/10.1039/D0MA00761G

    Article  Google Scholar 

  49. Kordy MGM, Abdel-Gabbar M, Soliman HA, Aljohani G, BinSabt M, Ahmed IA, Shaban M (2022) Phyto-capped ag nanoparticles: green synthesis, characterization, and catalytic and antioxidant activities. Nanomaterials 12:373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Desouky NE, Shoueir KR, Mehasseb IE, Kemary ME (2020) Bio-inspired green manufacturing of plasmonic silver nanoparticles/Degussa using Banana Waste Peduncles: photocatalytic, antimicrobial, and cytotoxicity evaluation. J Market Res 10:671–686

    Google Scholar 

  51. Udomkun P, Boonupara T, Smith SM, Kajitvichyanukul P (2022) Green Ag/AgCl as an effective plasmonic photocatalyst for degradation and mineralization of methylthioninium chloride. Separations 9:191

    Article  CAS  Google Scholar 

  52. Yu C, Tang J, Liu X, Ren X, Zhen M, Wang L (2019) Green biosynthesis of silver nanoparticles using Eriobotrya Japonica (Thunb.) leaf extract for reductive catalysis. Materials 12:189

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ali A, Sattar M, Hussain F, Tareen MHK, Militky J, Noman MT (2021) Single-step green synthesis of highly concentrated and stable colloidal dispersion of core-shell silver nanoparticles and their antimicrobial and ultra-high catalytic properties. Nanomaterials 11:1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Francis PK, Sivadasan S, Avarachan A, Gopinath A (2019) A novel green synthesis of gold nanoparticles using seaweed Lobophora variegata and its potential application in the reduction of nitrophenols. Part Sci Technol 38(3):365–370

    Article  Google Scholar 

  55. Kazemi M, Ghobadi M (2017) Magnetically recoverable nano-catalysts in sulfoxidation reactions. Nanotechnol Rev 6(6):549–571

    Article  CAS  Google Scholar 

  56. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J-M (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075

    Article  CAS  PubMed  Google Scholar 

  57. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107

    Article  ADS  Google Scholar 

  58. Veillette M, Giroir-Fendler A, Faucheux N, Heitz M (2017) Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: from model acid oil to microalgae lipids. Chem Eng J 308:101–109

    Article  CAS  Google Scholar 

  59. Safakish E, Nayebzadeh H, Saghatoleslami N, Kazemifard S (2020) Comprehensive assessment of the preparation conditions of a separable magnetic nanocatalyst for biodiesel production from algae. Algal Res 49:101949

    Article  Google Scholar 

  60. Khandelwal H, Dhar H, Thalla AK, Kumar S (2019) Application of life cycle assessment in municipal solid waste management: a worldwide critical review. J Clean Prod 209:630–654

    Article  Google Scholar 

  61. Paździor K, Bilińska L, Ledakowicz S (2019) A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem Eng J 376:120597

    Article  Google Scholar 

  62. Gallo-Cordova A, Castro JJ, Winkler EL, Lima E, Zysler RD, del Morales MP, Ovejero JG, Streitwieser DA (2021) Improving degradation of real wastewaters with self-heating magnetic nanocatalysts. J Clean Prod 308:127385

    Article  CAS  Google Scholar 

  63. Naderi N, Karponis D, Mosahebi A, Seifalian AM (2018) Nanoparticles in wound healing; from hope to promise, from promise to routine. Front Biosci 23(6):1038–1059

    CAS  Google Scholar 

  64. Farzinfar E, Paydayesh A (2019) Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. Int J Polym Mater Polym Biomater 68(11):628–638

    Article  CAS  Google Scholar 

  65. Forouzandehdel S, Meskini M, Rami MR (2020) Design and application of (Fe3O4)-GOTfOH based AgNPs doped starch/PEG-poly (acrylic acid) nanocomposite as the magnetic nanocatalyst and the wound dress. J Mol Struct 1214:128142

    Article  CAS  Google Scholar 

  66. Shirzadi-Ahodashti M, Ebrahimzadeh MA, Amiri O, Naghizadeh A, Mortazavi-Derazkola S (2020) Novel NiFe/Si/Au magnetic nanocatalyst: Biogenic synthesis, efficient and reusable catalyst with enhanced visible light photocatalytic degradation and antibacterial activity. Appl Organometall Chem. https://doi.org/10.1002/aoc.5467

    Article  Google Scholar 

  67. Li Z-L, Wu H, Zhu J-Q, Sun L-Y, Tong X-M, Huang D-S, Yang T (2022) Novel strategy for optimized nanocatalytic tumor therapy: from an updated view. Small Sci 2:2200024

    Article  CAS  Google Scholar 

  68. Dai C, Wang C, Hu R, Lin H, Liu Z, Yu L, Chen Y, Zhang B (2019) Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials 219:119374

    Article  CAS  PubMed  Google Scholar 

  69. Ying W, Zhang Y, Gao W, Cai X, Wang G, Wu X, Chen L, Meng Z, Zheng Y, Hu B, Lin X (2020) Hollow magnetic nanocatalysts drive starvation–chemodynamic–hyperthermia synergistic therapy for tumor. ACS Nano 14(8):9662–9674

    Article  CAS  PubMed  Google Scholar 

  70. Khoshtabiat L, Meshkini A, Matin MM (2023) g-C3N4-based photoresponsive magnetic nanocatalyst drives type-I photodynamic therapy under visible light irradiation, boosting chemo/chemodynamic synergistic therapy of colon cancer. Cancer Nanotechnol 14(1):1–27

    Article  Google Scholar 

  71. Qian X, Zhang J, Gu Z, Chen Y (2019) Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 211:1–13

    Article  CAS  PubMed  Google Scholar 

  72. Wang L, Huo M, Chen Y, Shi J (2018) Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 163:1–13

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J (2018) Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 12(11):11000–11012

    Article  CAS  PubMed  Google Scholar 

  74. Feng L, Gai S, He F, Yang P, Zhao Y (2020) Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano 14(6):7245–7258

    Article  CAS  PubMed  Google Scholar 

  75. Jones AW (2011) Early drug discovery and the rise of pharmaceutical chemistry. Drug Test Anal 3(6):337–344

    Article  CAS  PubMed  Google Scholar 

  76. Eyvazzadeh-Keihan R, Bahrami N, Taheri-Ledari R, Maleki A (2020) Highly facilitated synthesis of phenyl(tetramethyl)acridinedione pharmaceuticals by a magnetized nanoscale catalytic system, constructed of GO, Fe3O4 and creatine. Diam Relat Mater 102:107661

    Article  ADS  CAS  Google Scholar 

  77. Azizi S, Shadjou N (2021) Iron oxide (Fe3O4) magnetic nanoparticles supported on wrinkled fibrous nanosilica (WFNS) functionalized by biimidazole ionic liquid as an effective and reusable heterogeneous magnetic nanocatalyst for the efficient synthesis of N-sulfonylamidines. Heliyon 7(1):e05915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bikas S, Poursattar Marjani A, Bibak S, Sarreshtehdar Aslaheh H (2023) Synthesis of new magnetic nanocatalyst Fe3O4@CPTMO-phenylalanine-Ni and its catalytic effect in the preparation of substituted pyrazoles. Sci Rep 13(1):2564

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kamalzare M, Bayat M, Maleki A (2020) Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4@starch as a magnetically recyclable bionanocatalyst. Royal Soc Open Sci 7(7):200385

    Article  ADS  CAS  Google Scholar 

  80. Sajjadifar S, Amini I, Karimian M (2021) Synthesis and characterization of Fe3O4@APTES@MOF-199 magnetic nanocatalyst and its application in the synthesis of quinoxaline derivatives. Iranian J Catal 11(1):59–67

    CAS  Google Scholar 

  81. Singhvi M, Kim M, Kim B-S (2022) Production of therapeutically significant genistein and daidzein compounds from soybean glycosides using magnetic nanocatalyst: a novel approach. Catalysts 12(10):1107

    Article  CAS  Google Scholar 

  82. Taheri-Ledari R, Rahimi J, Maleki A (2019) Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason Sonochem 59:104737

    Article  PubMed  Google Scholar 

  83. Kempasiddaiah M, Kandathil V, Dateer RB, Baidya M, Patil SA, Patil SA (2021) Efficient and recyclable palladium enriched magnetic nanocatalyst for reduction of toxic environmental pollutants. J Environ Sci 101:189–204

    Article  CAS  Google Scholar 

  84. Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8(1–2):47

    Article  CAS  Google Scholar 

  85. Ningthoujam R, Singh YD, Babu PJ, Tirkey A, Pradhan S, Sarma M (2022) Nanocatalyst in remediating environmental pollutants. Chem Phys Impact 4:100064

    Article  Google Scholar 

  86. Ammar SH, Ibrahim Elaibi A, MohammedSh I (2020) Core/shell Fe3O4@Al2O3-PMo magnetic nanocatalyst for photocatalytic degradation of organic pollutants in an internal loop airlift reactor. J Water Process Eng 37(101240):101240

    Article  Google Scholar 

  87. Nasrollahzadeh M, Sajjadi M, Tahsili MR (2020) High efficiency treatment of organic/inorganic pollutants using recyclable magnetic N-heterocyclic copper(II) complex and its antimicrobial applications. Sep Purif Technol 238:116403

    Article  CAS  Google Scholar 

  88. Dadashi J, Ghafuri H, Sajjadi M (2021) Fe3O4@SiO2 nanoparticles-supported Cu(II) complex: an efficient and reusable nanocatalyst for treating environmental pollutants in aqueous medium. Colloids Interf Sci Commun 44(100455):100455

    Article  CAS  Google Scholar 

  89. Karimipourfard D, Eslamloueyan R, Mehranbod N (2019) Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst. Process Saf Environ Prot 131:212–222

    Article  CAS  Google Scholar 

  90. Ertürk AS, Elmaci G, Gürbüz MU (2021) Reductant free green synthesis of magnetically recyclable MnFe2O4@SiO2–Ag core- shell nanocatalyst for the direct reduction of organic dye pollutants. Turk J Chem 45(6):1968–1979

    PubMed  PubMed Central  Google Scholar 

  91. Sajjadi M, Nasrollahzadeh M, Tahsili MR (2019) Catalytic and antimicrobial activities of magnetic nanoparticles supported N-heterocyclic palladium(II) complex: a magnetically recyclable catalyst for the treatment of environmental contaminants in aqueous media. Sep Purif Technol 227(115716):115716

    Article  CAS  Google Scholar 

  92. Ahsan MA, Jabbari V, El-Gendy AA, Curry ML, Noveron JC (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 497:143608

    Article  CAS  Google Scholar 

  93. Esmati M, Zeynizadeh B (2021) Introducing rGO@Fe3O4@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and aromatic aldehydes. Appl Organometall Chem. https://doi.org/10.1002/aoc.6496

    Article  Google Scholar 

  94. Rayati S, Nejabat F, Panjiali F (2019) Aerobic oxidation of olefins in the presence of a new amine functionalized core–shell magnetic nanocatalyst. Catal Commun. https://doi.org/10.1016/j.catcom.2019.01.019

    Article  Google Scholar 

  95. Nezhad SM, Zare EN, Davarpanah A, Pourmousavi SA, Ashrafizadeh M, Kumar AP (2022) Ionic liquid-assisted fabrication of bioactive heterogeneous magnetic nanocatalyst with antioxidant and antibacterial activities for the synthesis of polyhydroquinoline derivatives. Molecules 27:1748. https://doi.org/10.3390/molecules27051748

    Article  CAS  Google Scholar 

  96. Abe C, Miyazawa T (2022) Current use of fenton reaction in drugs and food. Molecules 27:5451. https://doi.org/10.3390/molecules27175451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu M, Ye Y, Ye J, Gao T, Wang D, Chen G, Song Z (2023) Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry 9:110. https://doi.org/10.3390/magnetochemistry9040110

    Article  CAS  Google Scholar 

  98. Dantas J, Leal E, Cornejo DR, Costa ACFM (2018) Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4. Arabian J Chem 13(1):3026–3042

    Article  Google Scholar 

  99. Chen Y, Liu T, He H, Liang H (2018) Fe3O4/ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production. Appl Organomet Chem 32:5. https://doi.org/10.1002/aoc.4330

    Article  CAS  Google Scholar 

  100. Liu M, Yu T, Huang R, Qi W, He Z, Su R (2020) Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catal Sci Technol 10:3515–3531

    Article  CAS  Google Scholar 

  101. Baran T, Sargin I (2020) Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation. Int J Biol Macromol 155:814–822

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Q, Yang X, Guan J (2019) Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl Nano Mater 2(8):4681–4697

    Article  CAS  Google Scholar 

  103. Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767

    Article  CAS  Google Scholar 

  104. Zhang K, Suh JM, Choi JW, Jang HW, Shokouhimehr M, Varme RS (2019) Recent advances in the nanocatalyst-assisted NaBH4 reduction of nitroaromatics in water. ACS Omega 4:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ramesh D, Kiruthika T, Prabha B, Djanaguiraman M, Karthikeyan S (2020) Nanocatalysts and Biofuels. Green Synth Nanomater Bioenergy Appl 17:1–22

    Google Scholar 

  106. Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M (2020) Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 30:171–184

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang X, Huang R, Gopalakrishnan S, Cao-Milán R, Rotello VM (2019) Bioorthogonal nanozymes: progress towards therapeutic applications. Trends Chem 1(1):90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Si A, Pal K, Kralj S, El-Sayyad GS, de Souza FG, Narayanan T (2020) Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater Today Chem 17:100327

    Article  CAS  Google Scholar 

  109. Pal K, Chakroborty S, Nath N (2022) Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications. Green Process Synth 11(1):951–964

    Article  CAS  Google Scholar 

  110. Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Thomas S, Zaheer T, de Souza FG (2022) A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 47(5):691–707

    Article  ADS  CAS  Google Scholar 

  111. Pal K, Si A, El-Sayyad GS, Elkodous MA, Kumar R, El-Batal AI, Kralj S, Thomas S (2021) Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: optoelectronics and biotechnological aspects. Crit Rev Solid State Mater Sci 46(5):385–449

    Article  ADS  CAS  Google Scholar 

  112. Beena SM, Annadurai N, Jayaram S, Sarojini S (2022) Industrial applications of hybrid nanocatalysts and their green synthesis. Topics Catal 65:1910–1922

    Article  Google Scholar 

  113. Nath N, Chakroborty S, Panda P (2002) High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top Catal 65:1706–1718

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support of the Department of Life Sciences, CHRIST (Deemed to be University) for the support for carrying out this work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The idea was conceived by SS. Data collection and analysis were performed by AS, CKS, RS, and SS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suma Sarojini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have given the consent of the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, A., Sunil, C.K., Sarkar, R. et al. Greener Assembly of Nano Catalysts and Sustainable Applications of Magnetically Retrievable and Plasmonic Nano Catalysts. Top Catal 67, 265–279 (2024). https://doi.org/10.1007/s11244-023-01885-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01885-6

Keywords

Navigation