Skip to main content
Log in

Advanced Kinetic and Titration Strategies for Assessing the Intrinsic Kinetics on Oxide and Sulfide Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Found on the surfaces of transition metal oxides or sulfides are metal cations and oxygen or sulfur anions (Mn+-O2− or Mn+-S2−) with diverse catalytic functions as redox sites (Mn+-O2− → M-□), Brønsted acid sites (M-OH), and Lewis acid–base sites (Mδ+-O2−). These active site pairs often work together in catalyzing the chemical transformation in cascade reactions. This article describes several experimental strategies, combining kinetic and titration methods, to decouple the effects of surface site occupation on turnover rates, identify the kinetic bottlenecks, remove the effects arising from deactivation, as well as elucidate the potential participation of multiple types of active sites. Using a correlative approach in connecting the rate dependencies and titration studies, one could pinpoint the key factors that contribute to the rates and interpret the measured rates in terms of molecular events on the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Modified from Ref. [21]

Scheme 3
Fig. 5

Reproduced from Ref. [7]

Similar content being viewed by others

References

  1. Abdelgaid M, Mpourmpakis G (2022) Structure−activity relationships in lewis acid−base heterogeneous catalysis. ACS Catal 12:4268–4289. https://doi.org/10.1021/acscatal.2c00229

    Article  CAS  Google Scholar 

  2. Védrine JC (2002) The role of redox, acid-base and collective properties and of cristalline state of heterogeneous catalysts in the selective oxidation of hydrocarbons. Top Catal 21:97–106. https://doi.org/10.1023/A:1020560200125

    Article  Google Scholar 

  3. Metiu H, Chrétien SC, Hu Z et al (2012) Chemistry of lewis acid−base pairs on oxide surfaces. J Phys Chem C 116:10439–10450. https://doi.org/10.1021/jp301341t

    Article  CAS  Google Scholar 

  4. Jacobsen CJH, Törnqvist E, Topsøe H (1999) HDS, HDN and HYD activities and temperature-programmed reduction of unsupported transition metal sulfides. Catal Lett 63:179–183. https://doi.org/10.1023/a:1019017004845

    Article  CAS  Google Scholar 

  5. Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2007) The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study. J Catal 248:188–203. https://doi.org/10.1016/j.jcat.2007.02.028

    Article  CAS  Google Scholar 

  6. Šarić M, Rossmeisl J, Moses PG (2018) Modeling the adsorption of sulfur containing molecules and their hydrodesulfurization intermediates on the co-promoted MoS2 catalyst by DFT. J Catal 358:131–140. https://doi.org/10.1016/j.jcat.2017.12.001

    Article  CAS  Google Scholar 

  7. Cai H, Schimmenti R, Gradiski MV et al (2021) Mechanistic similarities and differences for hydrogenation of aromatic heterocycles and aliphatic carbonyls on sulfided Ru nanoparticles. ACS Catal 11:12585–12608. https://doi.org/10.1021/acscatal.1c01925

    Article  CAS  Google Scholar 

  8. Cai H, Schimmenti R, Nie H et al (2019) Mechanistic role of the proton-hydride pair in heteroarene catalytic hydrogenation. ACS Catal 9:9438–9445. https://doi.org/10.1021/acscatal.9b01997

    Article  CAS  Google Scholar 

  9. Cai H, Chin YHC (2021) Catalytic effects of chemisorbed sulfur on pyridine and cyclohexene hydrogenation on Pd and Pt clusters. ACS Catal 11:1684–1705. https://doi.org/10.1021/acscatal.0c04213

    Article  CAS  Google Scholar 

  10. Sun R, Delidovich I, Palkovits R (2019) Dimethoxymethane as a cleaner synthetic fuel: synthetic methods, catalysts, and reaction mechanism. ACS Catal 9:1298–1318. https://doi.org/10.1021/acscatal.8b04441

    Article  CAS  Google Scholar 

  11. Baranowski CJ, Bahmanpour AM, Kröcher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B 217:407–420. https://doi.org/10.1016/j.apcatb.2017.06.007

    Article  CAS  Google Scholar 

  12. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal 4:3357–3380. https://doi.org/10.1021/cs5003417

    Article  CAS  Google Scholar 

  13. Gomez E, Kattel S, Yan B et al (2018) (2018) Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat Commun 9:1–6. https://doi.org/10.1038/s41467-018-03793-w

    Article  CAS  Google Scholar 

  14. Xing F, Nakaya Y, Yasumura S et al (2022) Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nat Catal 5:55–65. https://doi.org/10.1038/s41929-021-00730-x

    Article  CAS  Google Scholar 

  15. Liu S, Wang H, Wang S et al (2023) Engineering morphology and Ni substitution of NixCo3-xO4 spinel oxides to promote catalytic combustion of ethane: elucidating the influence of oxygen defects. ACS Catal 13:4683–4699. https://doi.org/10.1021/acscatal.3c00286

    Article  CAS  Google Scholar 

  16. Yuan Y, Brady C, Lobo RF, Xu B (2021) Understanding the correlation between ga speciation and propane dehydrogenation activity on Ga/H-ZSM-5 catalysts. ACS Catal 11:10647–10659. https://doi.org/10.1021/acscatal.1c01497

    Article  CAS  Google Scholar 

  17. Zhao D, Tian X, Doronkin DE et al (2021) In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 599:234–238. https://doi.org/10.1038/s41586-021-03923-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deshlahra P, Iglesia E (2016) Reactivity and selectivity descriptors for the activation of C–H bonds in hydrocarbons and oxygenates on metal oxides. J Phys Chem C 120:16741–16760. https://doi.org/10.1021/acs.jpcc.6b04604

    Article  CAS  Google Scholar 

  19. Yan H, He K, Samek IA et al (2021) Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371:1257–1260

    Article  CAS  PubMed  Google Scholar 

  20. Zabilska A, Clark AH, Moskowitz BM et al (2022) Redox dynamics of active VOx sites promoted by TiOx during oxidative dehydrogenation of ethanol detected by operando quick XAS. JACS Au 2:762–776. https://doi.org/10.1021/jacsau.2c00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Broomhead WT, Tian W, Herrera JE, Chin YHC (2022) Kinetic coupling of redox and acid chemistry in methanol partial oxidation on vanadium oxide catalysts. ACS Catal 12:11801–11820. https://doi.org/10.1021/acscatal.2c01852

    Article  CAS  Google Scholar 

  22. Deshlahra P, Carr RT, Chai SH, Iglesia E (2015) Mechanistic details and reactivity descriptors in oxidation and acid catalysis of methanol. ACS Catal 5:666–682. https://doi.org/10.1021/cs501599y

    Article  CAS  Google Scholar 

  23. Chen K, Iglesia E, Bell AT (2001) Isotopic tracer studies of reaction pathways for propane oxidative dehydrogenation on molybdenum oxide catalysts. J Phys Chem B 105:646–653. https://doi.org/10.1021/jp002100x

    Article  CAS  Google Scholar 

  24. Kwon S, Deshlahra P, Iglesia E (2018) Dioxygen activation routes in Mars-van Krevelen redox cycles catalyzed by metal oxides. J Catal 364:228–247. https://doi.org/10.1016/J.JCAT.2018.05.016

    Article  CAS  Google Scholar 

  25. Christiansen MA, Mpourmpakis G, Vlachos DG (2013) Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3(100). ACS Catal 3:1965–1975. https://doi.org/10.1021/cs4002833

    Article  CAS  Google Scholar 

  26. Otero Areán C, Bellan AL, Mentruit MP et al (2000) Preparation and characterization of mesoporous γ-Ga2O3. Microporous Mesoporous Mater 40:35–42. https://doi.org/10.1016/S1387-1811(00)00240-7

    Article  Google Scholar 

  27. Scaranto J, Giorgianni S (2008) A quantum-mechanical study of CO adsorbed on TiO2: a comparison of the Lewis acidity of the rutile (110) and the anatase (101) surfaces. J Mol Struct 858:72–76. https://doi.org/10.1016/j.theochem.2008.02.027

    Article  CAS  Google Scholar 

  28. Abee MW, Cox DF (2002) NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces. Surf Sci 520:65–77. https://doi.org/10.1016/S0039-6028(02)02247-1

    Article  CAS  Google Scholar 

  29. Roy S, Mpourmpakis G, Hong D-Y et al (2012) Mechanistic study of alcohol dehydration on γ-Al2O3. ACS Catal 2:1846–1853. https://doi.org/10.1021/cs300176d

    Article  CAS  Google Scholar 

  30. Jenness GR, Christiansen MA, Caratzoulas S et al (2014) Site-dependent Lewis acidity of γ-Al2O3 and its impact on ethanol dehydration and etherification. J Phys Chem C 118:12899–12907. https://doi.org/10.1021/jp5028349

    Article  CAS  Google Scholar 

  31. Christiansen MA, Mpourmpakis G, Vlachos DG (2013) Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3 (100). ACS Catal 3:1965–1975. https://doi.org/10.1021/cs4002833

    Article  CAS  Google Scholar 

  32. Kostetskyy P, Mpourmpakis G (2015) Structure-activity relationships in the production of Olefins from alcohols and ethers: a first-principles theoretical study. Catal Sci Technol 4:4547–4555. https://doi.org/10.1039/c5cy00925a

    Article  Google Scholar 

  33. Macht J, Janik MJ, Neurock M, Iglesia E (2008) Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters. J Am Chem Soc 130:10369–10379. https://doi.org/10.1021/ja803114r

    Article  CAS  PubMed  Google Scholar 

  34. Carr RT, Neurock M, Iglesia E (2011) Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. J Catal 278:78–93. https://doi.org/10.1016/j.jcat.2010.11.017

    Article  CAS  Google Scholar 

  35. Macht J, Carr RT, Iglesia E (2009) Consequences of acid strength for isomerization and elimination catalysis on solid acids. J Am Chem Soc 131:6554–6565. https://doi.org/10.1021/ja900829x

    Article  CAS  PubMed  Google Scholar 

  36. Macht J, Carr RT, Iglesia E (2009) Functional assessment of the strength of solid acid catalysts. J Catal 264:54–66. https://doi.org/10.1016/j.jcat.2009.03.005

    Article  CAS  Google Scholar 

  37. Sharifvaghefi S, Yang B, Zheng Y (2018) New insights on the role of H2S and sulfur vacancies on Dibenzothiophene hydrodesulfurization over MoS2 edges. Appl Catal A 566:164–173. https://doi.org/10.1016/j.apcata.2018.05.033

    Article  CAS  Google Scholar 

  38. Wang H, Iglesia E (2010) Thiophene hydrodesulfurization catalysis on supported Ru clusters: mechanism and site requirements for hydrogenation and desulfurization pathways. J Catal 273:245–256. https://doi.org/10.1016/j.jcat.2010.05.019

    Article  CAS  Google Scholar 

  39. Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2009) The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of Thiophene: a density functional study. J Catal 268:201–208. https://doi.org/10.1016/j.jcat.2009.09.016

    Article  CAS  Google Scholar 

  40. Ding S, Jiang S, Zhou Y et al (2017) Catalytic characteristics of active corner sites in CoMoS nanostructure hydrodesulfurization–a mechanism study based on DFT calculations. J Catal 345:24–38. https://doi.org/10.1016/j.jcat.2016.11.011

    Article  CAS  Google Scholar 

  41. Paul JF, Payen E (2003) Vacancy formation on MoS2 hydrodesulfurization catalyst: DFT study of the mechanism. J Phys Chem B 107:4057–4064. https://doi.org/10.1021/jp027668f

    Article  CAS  Google Scholar 

  42. Rangarajan S, Mavrikakis M (2016) DFT Insights into the competitive adsorption of sulfur- and nitrogen-containing compounds and hydrocarbons on co-promoted molybdenum sulfide catalysts. ACS Catal 6:2904–2917. https://doi.org/10.1021/acscatal.6b00058

    Article  CAS  Google Scholar 

  43. Baertsch CD, Komala KT, Chua YH, Iglesia E (2002) Genesis of brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts. J Catal 205:44–57. https://doi.org/10.1006/JCAT.2001.3426

    Article  CAS  Google Scholar 

  44. Fu J, Liu S, Zheng W et al (2022) Modulating the dynamics of Brønsted acid sites on PtWOx inverse catalyst. Nat Catal 5:144–153. https://doi.org/10.1038/s41929-022-00745-y

    Article  CAS  Google Scholar 

  45. Greiner MT, Chai L, Helander MG et al (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Func Mater 22:4557–4568. https://doi.org/10.1002/adfm.201200615

    Article  CAS  Google Scholar 

  46. Faye J, Capron M, Takahashi A et al (2015) Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoOx/TiO2 catalysts. Energy Sci Eng 3:115–125. https://doi.org/10.1002/ese3.53

    Article  CAS  Google Scholar 

  47. Liu H, Iglesia E (2003) Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures. J Phys Chem B 107:10840–10847. https://doi.org/10.1021/JP0301554

    Article  CAS  Google Scholar 

  48. Deshlahra P, Iglesia E (2014) Methanol oxidative dehydrogenation on oxide catalysts: molecular and dissociative routes and hydrogen addition energies as descriptors of reactivity. J Phys Chem C 118:26115–26129. https://doi.org/10.1021/jp507922u

    Article  CAS  Google Scholar 

  49. Tatibouët J-M, Lauron-Pernot H (2001) Transient isotopic study of methanol oxidation on unsupported V2O5 mechanism of methylal formation. J Mol Catal A: Chem 171:205–216. https://doi.org/10.1016/S1381-1169(01)00104-2

    Article  Google Scholar 

  50. Ai M (1983) The reaction of formaldehyde on various metal oxide catalysts. J Catal 83:141–150. https://doi.org/10.1016/0021-9517(83)90037-4

    Article  CAS  Google Scholar 

  51. Ai M (1982) The production of methyl formate by the vapor-phase oxidation of methanol. J Catal 77:279–288. https://doi.org/10.1016/0021-9517(82)90168-3

    Article  CAS  Google Scholar 

  52. KaichevPopova GYa, Chesalov YuA VV et al (2014) Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J Catal 311:59–70. https://doi.org/10.1016/j.jcat.2013.10.026

    Article  CAS  Google Scholar 

  53. Li H, Song H, Chen L, Xia C (2015) Designed SO42−/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis: the acid sites control and reaction pathways. Appl Catal B 165:466–476. https://doi.org/10.1016/j.apcatb.2014.10.033

    Article  CAS  Google Scholar 

  54. Peláez R, Marín P, Ordóñez S (2020) Synthesis of poly(oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins: a kinetic study. Chem Eng J 396:125305. https://doi.org/10.1016/j.cej.2020.125305

    Article  CAS  Google Scholar 

  55. Grünert A, Losch P, Ochoa-Hernández C et al (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20:4719–4728. https://doi.org/10.1039/c8gc02617c

    Article  CAS  Google Scholar 

  56. Yao R, Herrera JE, Chen L, Chin YHC (2020) Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catal 10:6952–6968. https://doi.org/10.1021/acscatal.0c01073

    Article  CAS  Google Scholar 

  57. Li N, Wang S, Ren Q et al (2016) Catalytic mechanisms of methanol oxidation to methyl formate on vanadia-titania and vanadia-titania-sulfate catalysts. J Phys Chem C 120:29290–29301. https://doi.org/10.1021/acs.jpcc.6b10289

    Article  CAS  Google Scholar 

  58. Liu H, Iglesia E (2005) Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J Phys Chem B 109:2155–2163. https://doi.org/10.1021/jp0401980

    Article  CAS  PubMed  Google Scholar 

  59. Pang Y, Ardagh MA, Shetty M et al (2021) On the spatial design of co-fed amines for selective dehydration of methyl lactate to acrylates. ACS Catal 11:5718–5735. https://doi.org/10.1021/acscatal.1c00573

    Article  CAS  Google Scholar 

  60. Suarez W, Dumesic JA, Hill CG (1985) Acidic properties of molybdena-alumina for different extents of reduction: infrared and gravimetric studies of adsorbed pyridine. J Catal 94:408–421. https://doi.org/10.1016/0021-9517(85)90206-4

    Article  CAS  Google Scholar 

  61. Herman GS, Dohnálek Z, Ruzycki N, Diebold U (2003) Experimental investigation of the interaction of water and methanol with anatase−TiO2(101). J Phys Chem B 107:2788–2795. https://doi.org/10.1021/jp0275544

    Article  CAS  Google Scholar 

  62. Foo GS, Hu G, Hood ZD et al (2017) Kinetics and mechanism of methanol conversion over anatase titania nanoshapes. ACS Catal 7:5345–5356. https://doi.org/10.1021/acscatal.7b01456

    Article  CAS  Google Scholar 

  63. Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A 157:67–90. https://doi.org/10.1016/S0926-860X(97)00021-5

    Article  CAS  Google Scholar 

  64. Centi G (1996) Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics. Appl Catal A 147:267–298. https://doi.org/10.1016/S0926-860X(96)00179-2

    Article  CAS  Google Scholar 

  65. Machiels CJ, Sleight AW (1982) Kinetic isotope effect in the selective oxidation of methanol to formaldehyde over some molybdate catalysts. J Catal 76:238–239. https://doi.org/10.1016/0021-9517(82)90254-8

    Article  CAS  Google Scholar 

  66. Kilos B, Bell AT, Iglesia E (2009) Mechanism and site requirements for ethanol oxidation on vanadium oxide domains. J Phys Chem C 113:2830–2836. https://doi.org/10.1021/jp8078056

    Article  CAS  Google Scholar 

  67. Gong X, Ye Y, Chowdhury AD (2022) Evaluating the role of descriptor- and spectator-type reaction intermediates during the early phases of zeolite catalysis. ACS Catal 12:15463–15500. https://doi.org/10.1021/acscatal.2c04600

    Article  CAS  Google Scholar 

  68. Bates JS, Biswas S, Suh S-E et al (2022) Chemical and electrochemical o2 reduction on earth-abundant M–N–C catalysts and implications for mediated electrolysis. J Am Chem Soc 144:922–927. https://doi.org/10.1021/jacs.1c11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pomalaza G, Capron M, Ordomsky V, Dumeignil F (2016) Recent breakthroughs in the conversion of ethanol to butadiene. Catalysts 6:203. https://doi.org/10.3390/catal6120203

    Article  CAS  Google Scholar 

  70. Lin F, Zhang J, Liu D, Chin Y-H, (Cathy), (2018) Cascade reactions in tunable lamellar micro- and mesopores for C=C bond coupling and hydrocarbon synthesis. Angew Chem 130:13068–13072. https://doi.org/10.1002/ange.201803929

    Article  Google Scholar 

  71. Bayu A, Abudula A, Guan G (2019) Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: a review. Fuel Process Technol 196:106162. https://doi.org/10.1016/j.fuproc.2019.106162

    Article  CAS  Google Scholar 

  72. Bell RP (1936) The theory of reactions involving proton transfers. Proceedings Royal Soc of London Series A-Math Phys Sci 154:414–429. https://doi.org/10.1098/rspa.1936.0060

    Article  Google Scholar 

  73. Evans MG, Polanyi M (1936) Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans Faraday Soc 32:1333. https://doi.org/10.1039/tf9363201333

    Article  CAS  Google Scholar 

  74. Shangguan J, Chin Y-HC (2019) Kinetic significance of proton-electron transfer during condensed phase reduction of carbonyls on transition metal clusters. ACS Catal 9:1763–1778. https://doi.org/10.1021/acscatal.8b03470

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Suncor Energy Inc., Imperial Oil, Canada Foundation for Innovation (CFI), and the Natural Sciences and Engineering Research Council of Canada (NSERC) through Collaborative Research and Development Grant CRDPJ543577-19 and CRDPJ476457-14. H. Cai acknowledges the financial support from the National Natural Science Foundation of China (NSFC, Grant No. 22208299). G. Cai and W. T. Broomhead acknowledge financial support from the University of Toronto Graduate Student Endowment Fund. We thank A. Rodriguez (Western University) for preparing the bulk FeMoOx catalysts and W. Tian (Western University) for preparing the VOx/TiO2 catalysts.

Funding

NSERC, CRDPJ543577-19, Ya-Huei Cathy Chin, CRDPJ476457-14, Ya-Huei Cathy Chin, National Natural Science Foundation of China, 22208299, Haiting Cai

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Huei Cathy Chin or Haiting Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Broomhead, W.T., Chin, YH.C. et al. Advanced Kinetic and Titration Strategies for Assessing the Intrinsic Kinetics on Oxide and Sulfide Catalysts. Top Catal 66, 1102–1119 (2023). https://doi.org/10.1007/s11244-023-01849-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01849-w

Keywords

Navigation