Skip to main content

Advertisement

Log in

Industrial Applications of Hybrid Nanocatalysts and Their Green Synthesis

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 16 November 2022

This article has been updated

Abstract

The era of industrial revolution has been hugely dependent on a myriad of catalysts. The present era has contributed another dimension to this by the advent of nanocatalysts. The last decades saw even more fine tuning with the use of hybrid nanocatalysts by the integration of a plethora of functionalities into a single nanoparticle. The extremely high surface area, low toxicity, easy recovery and reusability, high product output and possibilities of green synthesis makes hybrid nanocatalysts significant in various fields like bioremediation, fuel cell production, cleaner energy production, dye degradation etc. Metal based hybrid nanocatalysts are highly appealing due to their extremely high surface over volume ratio, entailing unique electronic properties and access to more reaction sites. The recent years have seen more thrust being given to greener modes of synthesis of nanocatalysts, rather than the classical modes (which uses hazardous chemicals), aligning with sustainability goals.The current review is an attempt to explore the myriad uses of magnetic, metal and metal oxide hybrid nanocatalysts and their green synthesis methods. Optimizing the use of hybrid nanocatalysts in various domains would definitely help us achieve the SDGs of the United Nations for a more sustainable life on this planet.

Graphical Abstract

Highlights

Types of hybrid nanocatalysts have been described.

Industrial applications of hybrid nanocatalysis has been summarized.

Ways of greener synthesis of hybrid nanocatalysts for environmental sustainability depicted.

Advantages and limitations of hybrid nanocatalysts have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  2. Roy MA, Krishnan L, Roy Roy A (2018) Qualitative and Quantitative Phytochemical Analysis of Centella Asiatica. Natural Products Chemistry & Research 06(04). https://doi.org/10.4172/2329-6836.1000323

  3. Nath D, Banerjee P (2013) Green nanotechnology – A new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014

    Article  CAS  Google Scholar 

  4. Prinsen P, Luque R (2019) Introduction to Nanocatalysts. RSC Catal Ser 38:1–36

    CAS  Google Scholar 

  5. Xie L, Jin W, Chen H, Zhang Q (2019) Superparamagnetic Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy. J Biomed Nanotechnol 15:215–416

    Article  CAS  Google Scholar 

  6. Chen L, Zhong H, Qi X, Shao H, Xu K (2019) Modified core-shell magnetic mesoporous zirconia nanoparticles formed through a facile “outside-to-inside” way for CT/MRI dual-modal imaging and magnetic targeting cancer chemotherapy. RSC Adv 9:13220–13233. https://doi.org/10.1039/c9ra01063g

    Article  CAS  Google Scholar 

  7. Roohi R, Emdad H, Jafarpur K (2019) A Comprehensive Study and Optimization of Magnetic Nanoparticle Drug Delivery to Cancerous Tissues via External Magnetic Field. J Test Eval 47:20180450. https://doi.org/10.1520/jte20180450

    Article  Google Scholar 

  8. Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A (2019) Anticancer drug discovery using multicellular tumour spheroid models. Expert Opin Drug Discov 14:289–301. https://doi.org/10.1080/17460441.2019.1570129

    Article  CAS  Google Scholar 

  9. Raouf I, Khalid S, Khan A, Lee J, Kim HS, Kim MH (2020) A review on numerical modelling for magnetic nanoparticle hyperthermia: Progress and challenges. J Therm Biol 91:102644. https://doi.org/10.1016/j.jtherbio.2020.102644

    Article  CAS  Google Scholar 

  10. Xie J, Liu G, Eden HS, Ali H, Chen X (2011) Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Acc Chem Res 44:883–892

    Article  CAS  Google Scholar 

  11. Raita M, Arnthong J, Champreda V, Laosiripojana N (2015) Modification of magnetic nano particle lipasedesigns for biodiesel production from palmoil. Fuel Processing Technology 134:189–197. https://doi.org/10.1016/j.fuproc.2015.01.032

  12. Dalpozzo R (2015) Chem Inform Abstract: Magnetic Nanoparticle Supports for Asymmetric Catalysts. Chem Inform 46.https://doi.org/10.1002/chin.201535287

  13. Shylesh S, Schuenemann V, Thiel WR (2010) Chem Inform Abstract: Magnetically Separable Nanocatalysts: Bridges Between Homogeneous and Heterogeneous Catalysis. Chem Inform 41.https://doi.org/10.1002/chin.201030247

  14. Garrido I, Pastor-Belda M, Campillo N, Viñas P, Yañez MJ, Vela N, Navarro S, Fenoll J (2019) Photooxidation of insecticide residues by ZnO and TiO2 coated magnetic nanoparticles under natural sunlight. J Photochem Photobiol A 372:245–253. https://doi.org/10.1016/j.jphotochem.2018.12.027

    Article  CAS  Google Scholar 

  15. Shi F, Tse M, Pohl MM, Brückner A, Zhang S, Beller M (2007) Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angew Chem 119:9022–9024. https://doi.org/10.1002/ange.200703418

    Article  Google Scholar 

  16. Zhang Q, Yang X, Guan J (2019) Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl Nano Mater 2:4681–4697. https://doi.org/10.1021/acsanm.9b00976

    Article  CAS  Google Scholar 

  17. Voinov MA, Pagán JOS, Morrison E, Smirnova TI, Smirnov AI (2010) Surface-Mediated Production of Hydroxyl Radicals as a Mechanism of Iron Oxide Nanoparticle Biotoxicity. J Am Chem Soc 133:35–41

    Article  Google Scholar 

  18. Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M (2021) Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 30:171–184. https://doi.org/10.1016/j.jare.2020.12.001

    Article  CAS  Google Scholar 

  19. Kisch H, Chemistry GV, Notheisz F, Press A (2000) San Diego, 1999, pp.346. ISBN 0-12-651645-6; US$89.95. Journal of Organometallic Chemistry, 604: 300.https://doi.org/10.1016/s0022-328x(00)00195-9

  20. Roucoux A, Schulz J, Patin H (2002) Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chem Rev 102:3757–3778. https://doi.org/10.1021/cr010350j

    Article  CAS  Google Scholar 

  21. Chang LL, Erathodiyil N, Ying JY (2013) Nanostructured Catalysts for Organic Transformations. Acc Chem Res 46:1825–1837

    Article  Google Scholar 

  22. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  23. Jürgens B, Borchert H, Ahrenstorf K, Sonström P, Pretorius A, Schowalter M, Gries K, Rosenauer A, Weller H, Bäumer M (2008) Colloidally Prepared Nanoparticles for the Synthesis of Structurally Well-Defined and Highly Active Heterogeneous Catalysts. Angew Chem Int Ed 47:8946–8949

    Article  Google Scholar 

  24. Song H (2015) Metal Hybrid Nanoparticles for Catalytic Organic and Photochemical Transformations. Acc Chem Res 48:491–499

    Article  CAS  Google Scholar 

  25. Zhang Y, Grass ME, Habas SE, Tao F, Zhang T, Yang P, Somorjai GA (2007) One-step Polyol Synthesis and Langmuir – Blodgett Monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures. J Phys Chem C 11:12243–12253. https://doi.org/10.1021/jp073350h

    Article  CAS  Google Scholar 

  26. Somorjai GA, Frei H, Park JY (2009) Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. J Am Chem Soc 13:16589–16605

    Article  Google Scholar 

  27. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018

    Article  CAS  Google Scholar 

  28. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Morphological Control of Catalytically Active Platinum Nanocrystals. Angew Chem Int Ed 45:7824–7828. https://doi.org/10.1002/anie.200603068

    Article  CAS  Google Scholar 

  29. Sun YN, Giordano L, Goniakowski J, Lewandowski M, Qin ZH, Noguera C, Shaikhutdinov S, Pacchioni G, Freund HJ (2010) The Interplay between Structure and CO Oxidation Catalysis on Metal-Supported Ultrathin Oxide Films. Angew Chem Int Ed 49:4418–4421. https://doi.org/10.1002/anie.201000437

    Article  CAS  Google Scholar 

  30. Somorjai G, Park J (2008) Molecular Factors of Catalytic Selectivity. Angew Chem Int Ed 47:9212–9228. https://doi.org/10.1002/anie.200803181

    Article  CAS  Google Scholar 

  31. An K, Musselwhite N, Kennedy G, Pushkarev VV, Robert Baker L, Somorjai GA (2013) Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J Colloid Interface Sci 392:122–128. https://doi.org/10.1016/j.jcis.2012.10.029

    Article  CAS  Google Scholar 

  32. Warren SC, Perkins MR, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z, Werner J, Song J, Werner-Zwanziger U, Zwanziger JW, Grätzel M, DiSalvo FJ, Wiesner U (2012) A silica sol–gel design strategy for nanostructured metallic materials. Nat Mater 11:460–467. https://doi.org/10.1038/nmat3274

    Article  CAS  Google Scholar 

  33. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155. https://doi.org/10.1038/24132

    Article  CAS  Google Scholar 

  34. Sun S (2002) Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  35. Moon SY, Naik B, Jung CH, Qadir K, Park JY (2016) Tailoring metal-oxide interfaces of oxide-encapsulated Pt/silica hybrid nanocatalysts with enhanced thermal stability. Catal Today 265:245–253

    Article  CAS  Google Scholar 

  36. Benelmekki M (2015) An introduction to nanoparticles and nanotechnology. In: Designing Hybrid Nanoparticles Morgan & Claypool Publishers

  37. Ningthoujam R, Singh YD, Babu PJ, Tirkey A, Pradhan S, Sarma M (2022) Nanocatalyst in remediating environmental pollutants. Chemical Physics Impact 4. https://doi.org/10.1016/J.CHPHI.2022.100064

  38. Rodriguez JA (2004) Activation of Gold Nanoparticles on Titania: A Novel DeSOx Catalyst. 205–209. https://doi.org/10.1021/BK-2005-0890.CH027

  39. Wang X, Cai W, Liu S, Wang G, Wu Z, Zhao H (2013) ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions. Colloids Surf A 422:199–205

    Article  CAS  Google Scholar 

  40. Bharti P (2019) Process optimization of biodiesel production catalyzed by CaO nano catalyst using response surface methodology. Journal of Nanostructure in Chemistry 9:269–280. https://doi.org/10.1007/S40097-019-00317-W

  41. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–163

    Article  CAS  Google Scholar 

  42. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    Article  CAS  Google Scholar 

  43. Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A (2009) Physicochemical properties affecting cellular uptake of carbon nanotubes 5:89–97. https://doi.org/10.2217/NNM.09.95

  44. Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannongbua S (2011) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model 29:591–596

    Article  CAS  Google Scholar 

  45. Chang TMS, Prakash S (2001) Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol Biotechnol 17:249–260

    Article  CAS  Google Scholar 

  46. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Article  CAS  Google Scholar 

  47. Mänttäri M, Pihlajamäki A, Nyström M (2006) Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J Membr Sci 280:311–320

    Article  Google Scholar 

  48. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  49. Satyawali Y, Balakrishnan M (2008) Treatment of distillery effluent in a membrane bioreactor (MBR) equipped with mesh filter. Sep Purif Technol 63:278–286

    Article  CAS  Google Scholar 

  50. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: A critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  51. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  52. Zhang H, Jin M, Xia Y (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049

    Article  CAS  Google Scholar 

  53. Kesavan L, Tiruvalam R, Rahim MHA, Saiman MI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331:195–199

    Article  CAS  Google Scholar 

  54. Tao F (2012) Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem Soc Rev 41:7977–7979

    Article  CAS  Google Scholar 

  55. Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112:5780–5817. https://doi.org/10.1021/CR300096B

    Article  CAS  Google Scholar 

  56. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139

    Article  CAS  Google Scholar 

  57. Seybold G, Von H (1987) 1987. 367S., geb.198, -DM. ISBN3-527-26200-8. Nachrichten Aus Chemie, Technik Und Laboratorium, 35: 1264–1265.https://doi.org/10.1002/NADC.19870351215

  58. Cooper P, Society of Dyers and Colourists (1995) Colour in dye house effluent 200. https://books.google.com/books/about/Colour_in_Dyehouse_Effluent.html?hl=de&id=-oVKAAAAYAAJ

  59. Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43

    Article  CAS  Google Scholar 

  60. Wu W, He Q, Jiang C (2008) Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res Lett 3:397–415. https://doi.org/10.1007/S11671-008-9174-9

    Article  CAS  Google Scholar 

  61. Srivastava N, Mukhopadhyay M (2014) Biosynthesis of SnO2 Nanoparticles Using Bacterium Erwinia herbicola and Their Photocatalytic Activity for Degradation of Dyes. Ind Eng Chem Res 53:13971–13979

    Article  CAS  Google Scholar 

  62. Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A (2020) One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 10:1–12

    Article  Google Scholar 

  63. Jain A, Ahmad F, Gola D, Malik A (2020) Multidye degradation and antibacterial potential of Papaya leaf derived silver nanoparticles. Elsevier Retrieved June26, 2022, from https://www.sciencedirect.com/science/article/pii/S221515322030249X

  64. Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 3:48–55. https://doi.org/10.1016/J.ONANO.2018.06.001

    Article  Google Scholar 

  65. Nazari N, Jookar Kashi F (2021) A novel microbial synthesis of silver nanoparticles: Its bioactivity, Ag/Ca-Alg beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent. Sep Purif Technol 259:118117

    Article  CAS  Google Scholar 

  66. Cheng S, Li N, Jiang L, Li Y, Xu B, Zhou W (2019) Biodegradation of metal complex Naphthol Green B and formation of iron-sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresour Technol 273:49–55. https://doi.org/10.1016/J.BIORTECH.2018.10.02

    Article  CAS  Google Scholar 

  67. Kim B, Song WC, Park SY, Park G (2021) Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 11:347

    Article  Google Scholar 

  68. Seerangaraj V, Sathiyavimal S, Shankar SN, Nandagopal JGT, Balashanmugam P, Al-Misned FA, Shanmugavel M, Senthilkumar P, Pugazhendhi A (2021) Cytotoxic effects of silver nanoparticles on Ruellia tuberosa: Photocatalytic degradation properties against crystal violet and coomassie brilliant blue. J Environ Chem Eng 9:105088

    Article  CAS  Google Scholar 

  69. Zhu J, Wang PC, Lu M (2014) Selective oxidation of benzyl alcohol under solvent-free condition with go ld nano particles encapsulatedinmetal-organic framework. Elsevier. Retrieved May 18, 2022, from https://www.sciencedirect.com/science/article/pii/S0926860X14001665

  70. Bekhradnia AR, Zahir F, Arshadi S (2008) Selective oxidation of organic compounds using pyridinium-1-sulfonate fluorochromate, C5H5NSO3H [CrO3F] (PSFC). Monatshefte Fur Chemie 139:521–523

    Article  CAS  Google Scholar 

  71. Rautiainen S, Simakova O, Guo H, Leino AR, Kordás K, Murzin D, Leskelä M, Repo T (2014) Solvent controlled catalysis:synthesis of aldehyde, acidorester by selective oxidation of benzyl alcohol with go ld nanoparticles on alumina. Elsevier. Retrieved May 18, 2022, from https://www.sciencedirect.com/science/article/pii/S0926860X14004876

  72. Maleki` A (2018) Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason Sonochem 40:460–464

    Article  CAS  Google Scholar 

  73. Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A (2020) Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Mater Sci Eng C 107:110195

    Article  CAS  Google Scholar 

  74. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discovery 17:261–279

    Article  CAS  Google Scholar 

  75. Meyer RA, Sunshine JC, Green JJ (2015) Biomimetic particles as therapeutics. Trends Biotechnol 33:514–524

    Article  CAS  Google Scholar 

  76. Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett 236:19–22

    Article  Google Scholar 

  77. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251

    Article  CAS  Google Scholar 

  78. Guzmán MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2:104–111

    Google Scholar 

  79. Pileni MP (2000) Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl Chem 72:53–65

    Article  CAS  Google Scholar 

  80. Henglein A (2001) Reduction of Ag (CN) 2-on silver and platinum colloidal nanoparticles. Langmuir 17:2329–2333

    Article  CAS  Google Scholar 

  81. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287

    Article  CAS  Google Scholar 

  82. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences 96: 13611–13614

  83. Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta Part A Mol Biomol Spectrosc 79:254–262

    Article  CAS  Google Scholar 

  84. El-Sherbiny IM, Salih E, Yassin AM, Hafez EE (2016) Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells. J Nanopart Res 18:1–13

    Article  CAS  Google Scholar 

  85. Sanches LM, Petri DFS, de Melo Carrasco LD, Carmona-Ribeiro AM (2015) The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J Nanobiotechnol 13:1–13

    Article  Google Scholar 

  86. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR (2019) Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 160:130–142

    Article  CAS  Google Scholar 

  87. Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation: methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21

    Article  Google Scholar 

  88. Valencia PM, Basto PA, Zhang L, Rhee M, Langer R, Farokhzad OC, Karnik R (2010) Single-step assembly of homogenous lipid – polymeric and lipid – quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4:1671–1679

    Article  CAS  Google Scholar 

  89. Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61:850–862

    Article  CAS  Google Scholar 

  90. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR (2019) Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 160:130–142

    Article  CAS  Google Scholar 

  91. Das P, Linert Schiff W (2016) Base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–35723

    Article  CAS  Google Scholar 

  92. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW (2019) Hierarchically structured ternary heterojunctions based on Ce. 368 modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline Journal of Hazardous Materials 376:200–211

    CAS  Google Scholar 

  93. Rafiee F, Rezaie Karder F (2020) Bio-crosslinking of chitosan with oxidized starch, its functionalization with amino acid and magnetization: As a green magnetic support for silver immobilization and its catalytic activity investigation. Int J Biol Macromol 146:1124–1132

    Article  CAS  Google Scholar 

  94. Baran T, Nasrollahzadeh M (2021) Pd/CoFe. a highly effective and easily recoverable hybrid nanocatalyst for synthesis of benzonitriles and reduction of 2-nitroaniline Journal of Physics and Chemistry of Solids 149:109772

    CAS  Google Scholar 

  95. Varzi Z (2019) Design and preparation of ZnS-ZnFe. a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2 4 5‐triaryl‐1H‐imidazoles Applied Organometallic Chemistry 33:e5008

    Google Scholar 

  96. Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A (2021) Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J Saudi Chem Soc 25:101304

    Article  CAS  Google Scholar 

  97. Maleki A, Haji RF, Ghassemi M, Ghafuri H (2017) Preparation and application of a magnetic organic-inorganic hybrid nanocatalyst for the synthesis of α-aminonitriles. J Chem Sci 129:457–462. https://doi.org/10.1007/s12039-017-1253-y

    Article  CAS  Google Scholar 

  98. Ya’aini N, Amin NAS (2012) Catalytic performance of hybrid nanocatalyst for levulinicacid production from glucose. AIP Conference Proceedings. https://doi.org/10.1063/1.4769163

  99. Kustov LM (2021) Catalysis by Hybrid Nanomaterials. Molecules 26:352. https://doi.org/10.3390/molecules26020352

    Article  CAS  Google Scholar 

  100. Huertas RM, Fraga MC, Crespo JG, Pereira VJ (2019) Solvent-Free Process for the Development of Photocatalytic Membranes. Molecules 24:4481. https://doi.org/10.3390/molecules24244481

    Article  CAS  Google Scholar 

  101. Pooseekheaw P, Thongpan W, Panthawan A, Kantarak E, Sroila W, Singjai P (2020) Porous V2O5/TiO. Nanoheterostructure Films with Enhanced Visible-Light Photocatalytic Performance Prepared by the Sparking Method Molecules 25:3327. https://doi.org/10.3390/molecules25153327

    Article  CAS  Google Scholar 

  102. Kaplin IY, Lokteva ES, Golubina EV, Lunin VV (2020) Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules 25:4242

    Article  CAS  Google Scholar 

  103. Cebrián-García S, Balu A, García A, Luque R (2018) Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules 23:2283

    Article  Google Scholar 

  104. Pal K, Aljabali AA, Kralj S, Thomas S, de Souza FG (2021) Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations. Chemosphere 263:128104

    Article  CAS  Google Scholar 

  105. Asiya SI, Pal K, Kralj S, El-Sayyad GS, de Souza FG, Narayanan T (2020) Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater Today Chem 17:100327

    Article  Google Scholar 

  106. Ahadi N, Bodaghifard MA, Mobinikhaledi A (2019) Cu (II)-β‐cyclodextrin complex stabilized on magnetic nanoparticles: A retrievable hybrid promoter for green synthesis of spiropyrans. Appl Organomet Chem 33(2):e4738

    Article  Google Scholar 

  107. Bodaghifard MA, Mousavi Z (2020) Zinc (II)-poly (urea‐formaldehyde) supported on magnetic nanoparticles: A hybrid nanocatalyst for green synthesis of spiropyrans, spiroxanthenes, and spiropyrimidines. Appl Organomet Chem 34(10):e5859

    Article  CAS  Google Scholar 

  108. Asthana N, Pal K, Aljabali AA, Tambuwala MM, de Souza FG, Pandey K (2021) Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. J Mol Struct 1229:129592

    Article  CAS  Google Scholar 

  109. Senra JD, Malta LFB, da Costa MEHM, Michel RC, Aguiar LCS, Simas ABC, Antunes OAC (2009) Hydroxypropyl-α-cyclodextrin-capped palladium nanoparticles: Active scaffolds for efficient carbon-carbon bond forming cross-coupling in water. Adv Synth Catal 351:2411–2422

    Article  CAS  Google Scholar 

  110. Zhang W, Qi H, Li L, Wang X, Chen J, Peng K, Wang Z (2009) Hydrothermal Heck reaction catalyzed by Ni nanoparticles. Green Chem 11(8):1194–1200

    Article  CAS  Google Scholar 

  111. Kaneda K, Mitsudome T, Mizugaki T, Jitsukawa K (2010) Development of Heterogeneous Olympic Medal Metal Nanoparticle Catalysts for Environmentally Benign Molecular Transformations Based on the Surface Properties of Hydrotalcite. Molecules 15:8988–9007

    Article  CAS  Google Scholar 

  112. Cheng J, Zhang G, Du J, Tang L, Xu J, Li JJ (2011) New role of graphene oxide as active hydrogen donor in the recyclable palladium nanoparticles catalyzed ullmann reaction in environmental friendly ionic liquid/supercritical carbon dioxide system. J Mater Chem 21(10):3485–3494

    Article  CAS  Google Scholar 

  113. Gonzalez-Arellano C, Luque R, Macquarrie DJ (2009) Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chem. Commun. (Camb. UK) (11):14101412

  114. Chauhan BPS, Sarkar A, Chauhan M, Roka A (2009) Water as green oxidant: a highly selective conversion of organosilanes to silanols with water. Appl Organomet Chem 23(10):385390

    Article  Google Scholar 

  115. Kegnaes S, Mielby J, Mentzel UV, Christensen CH, Riisager A (2010) Formation of imines by selective gold-catalyzed aerobic oxidative coupling of alcohols and amines under ambient conditions. Green Chem 12(8):1437–1441

    Article  CAS  Google Scholar 

  116. Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafir A, Vallribera A (2010) Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: application to alkynylation of aryl halides, Suzuki–Miyaura cross-coupling, and Heck reactions under aerobic conditions. Green Chem 12(1):150–158

    Article  CAS  Google Scholar 

  117. Li P, Wang L, Li H (2005) Application of recoverable nanosized palladium(0) catalyst in Sonogashira reaction. Tetrahedron 61(36):8633–8640

    Article  CAS  Google Scholar 

  118. Pai MM, Batakurki SR, Yallur BC (2022) etal.Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene Top Catal https://doi.org/10.1007/s11244-022-01576-8.

  119. Pal K, Asthana N, Aljabali AA, Bhardwaj SK, Kralj S, Penkova A, Gomes de Souza F (2021) A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: Nano-imaging and biosensor applications. Critical Reviews in Solid State and Materials Sciences 1–17

  120. Scurria A, Pagliaro M, Ciriminna R (2021) Quick, convenient, and clean»: Advancing education in green chemistry and nanocatalysis using sol-gel catalysts under flow. Curr Res Green Sustainable Chem 4:100123

    Article  CAS  Google Scholar 

  121. Santhosh SK, Sarojini S, Umesh M (2021) Anti-Bio film Activities of Nanocomposites: Current Scopes and Limitations. In: Pal, K. (eds) Bio-manufactured Nanomaterials Springer, Cham.https://doi.org/10.1007/978-3-030-67223-2_5

  122. Sarojini S, Jayaram S (2021) An Impact of Antibacterial Efficacy of Metal Oxide Nanoparticles: A Promise for Future. In: Pal, K. (eds) Bio-manufactured Nanomaterials Springer, Cham.https://doi.org/10.1007/978-3-030-67223-2_18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suma Sarojini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: “In this article, the order that the authors appeared in the author list and affiliation was incorrect and it is updated with the correct author list and affiliation

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beena Sreekumar, M., Annadurai, N., Jayaram, S. et al. Industrial Applications of Hybrid Nanocatalysts and Their Green Synthesis. Top Catal 65, 1910–1922 (2022). https://doi.org/10.1007/s11244-022-01712-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01712-4

Keywords

Navigation