Skip to main content

Green Nanoparticles: Synthesis and Catalytic Applications

  • Reference work entry
  • First Online:
Handbook of Smart Materials, Technologies, and Devices

Abstract

The discovery of green nanoparticles (GN) has fascinated scientific community and has significantly improved in recent years. GN exhibited appealing applications in various fields such as catalysis, energy harvesting, and electrocatalysis. The performance of nanoparticles is interrelated with their singular features, which mainly relied on size and shape. In-depth knowledge of synthetic materials engineering and assembly dynamic is highly beneficial for discovering new protocols for the fabrication of nanoparticles with tunable properties. This chapter is focused on the different synthetic techniques reported for the synthesis of GNs, which mainly cover monometallic nanoparticles, bimetallic nanoparticles, and metal oxide nanoparticles. Different synthesis techniques that demonstrated for the desired performance or performance enhancement of nanomaterials have been discussed in a comprehensive manner. As a main area of GNs, naturally occurring biofibers and their applications in different areas of science and technology have been discussed. The latter part will focus on the catalytic applications of GNs. This section will discuss applications of all above discussed GNs for different catalytic reactions. Furthermore, the merits of GNs over conventional catalytic systems will also be covered. We envision that the collected information about the controlled synthesis of GNs and their catalytic applications for organic transformations will provide a strong platform to the researchers and learners working in the field of green nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aniruddha Balkrishna P, Chuanbao Z, Liyun M, Ronghui W, Sharwari KM, Yifan Z, Xiaotian L, Zhaohui M, Wenli Z, Zijie X et al (2020) Flexible and disposable gold nanoparticles-N-doped carbon- modified electrochemical sensor for simultaneous detection of dopamine and uric acid. Nanotechnology 32(6):065502

    Google Scholar 

  • Arul Dhas N, Gedanken A (1998) Sonochemical preparation and properties of nanostructured palladium metallic clusters. J Mater Chem 8:445–450

    Article  Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  Google Scholar 

  • Basavegowda N, Somai Magar KB, Mishra K, Lee YR (2014) Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New J Chem 38:5415–5420

    Article  Google Scholar 

  • Ben Tahar I, Fickers P, Dziedzic A, PÅ‚och D, Skóra B, Kus-LiÅ›kiewicz M (2019) Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physico-chemical and biological characteristics. Microb Cell Factories 18:210

    Article  Google Scholar 

  • Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    Google Scholar 

  • Bhangale H, Sarode KM, Patil AM, Patil DR (2018) Microbial synthesis of silver nanoparticles using Aspergillus flavus and their characterization. In: Pawar PM, Ronge BP, Balasubramaniam R, Seshabhattar S (eds) Techno-Societal 2016. Springer, Cham, pp 463–470

    Chapter  Google Scholar 

  • Bhatte KD, Fujita S-I, Arai M, Pandit AB, Bhanage BM (2011) Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide. Ultrason Sonochem 18:54–58

    Article  Google Scholar 

  • Bhatte KD, Sawant DN, Deshmukh KM, Bhanage BM (2012) Additive free microwave assisted synthesis of nanocrystalline Mg(OH)2 and MgO. Particuology 10:384–387

    Article  Google Scholar 

  • Bhosale MA, Bhatte KD, Bhanage BM (2013) A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide. Powder Technol 235:516–519

    Article  Google Scholar 

  • Cirtiu CM, Dunlop-Brière AF, Moores A (2011) Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions. Green Chem 13:288–291

    Article  Google Scholar 

  • Deshmukh KM, Qureshi ZS, Bhatte KD, Venkatesan KA, Srinivasan TG, Rao PRV, Bhanage BM (2011) One-pot electrochemical synthesis of palladium nanoparticles and their application in the Suzuki reaction. New J Chem 35:2747–2751

    Article  Google Scholar 

  • Dhas NA, Koltypin Y, Gedanken A (1997) Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders. Chem Mater 9:3159–3163

    Article  Google Scholar 

  • Eluri R, Paul B (2012) Microwave assisted greener synthesis of nickel nanoparticles using sodium hypophosphite. Mater Lett 76:36–39

    Article  Google Scholar 

  • Floren M, Migliaresi C, Motta A (2016) Processing techniques and applications of silk hydrogels in bioengineering. J Funct Biomater 7:26

    Article  Google Scholar 

  • Fujimoto T, Terauchi S-Y, Umehara H, Kojima I, Henderson W (2001) Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem Mater 13:1057–1060

    Article  Google Scholar 

  • Galateanu B, Hudita A, Zaharia C, Bunea M-C, Vasile E, Buga M-R, Costache M (2019) Silk-based hydrogels for biomedical applications. In: Mondal MIH (ed) Cellulose-based superabsorbent hydrogels. Springer, Cham, pp 1791–1817

    Chapter  Google Scholar 

  • Galletti AMR, Antonetti C, Venezia AM, Giambastiani G (2010) An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde. Appl Catal A Gen 386:124–131

    Article  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  Google Scholar 

  • He C-X, Lei B-X, Wang Y-F, Su C-Y, Fang Y-P, Kuang D-B (2010) Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. Chem Eur J 16:8757–8761

    Article  Google Scholar 

  • Khan ZUH, Khan A, Chen Y, Khan A, Shah NS, Muhammad N, Murtaza B, Tahir K, Khan FU, Wan P (2017) Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic azo dyes using AuNPs/GC as modified paste electrode. J Alloys Compd 725:869–876

    Article  Google Scholar 

  • Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res 11:1193–1200

    Article  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  Google Scholar 

  • Koltypin Y, Nikitenko SI, Gedanken A (2002) The sonochemical preparation of tungsten oxide nanoparticles. J Mater Chem 12:1107–1110

    Article  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  • Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016) Kolanut (Cola nitida) mediated synthesis of silver–gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J Clust Sci 27:1561–1577

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)−chloride complex. Langmuir 22:7318–7323

    Article  Google Scholar 

  • Li G, Li Y, Wang Z, Liu H (2017) Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys 187:133–140

    Article  Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A Mol Biomol Spectrosc 61:761–765

    Article  Google Scholar 

  • Luo Y (2008) Size-controlled preparation of dendrimer-protected gold nanoparticles: a sunlight irradiation-based strategy. Mater Lett 62:3770–3772

    Article  Google Scholar 

  • Luo X (2009) One-step synthesis and characterization of dendrimer-protected gold nanoparticles. Colloid J 71:281–284

    Article  Google Scholar 

  • Ma L, Wu R, Patil A, Zhu S, Meng Z, Meng H, Hou C, Zhang Y, Liu Q, Yu R et al (2019) Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater 29:1904549

    Article  Google Scholar 

  • Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K et al (2020a) Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14:4716–4726

    Article  Google Scholar 

  • Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C et al (2020b) From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small 16:2000203

    Article  Google Scholar 

  • Maheshwaran G, Nivedhitha Bharathi A, Malai Selvi M, Krishna Kumar M, Mohan Kumar R, Sudhahar S (2020) Green synthesis of silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. J Environ Chem Eng 8:104137

    Article  Google Scholar 

  • Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101:7033–7037

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M et al (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Khalaj M (2014a) Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. RSC Adv 4:47313–47318

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M (2014b) Journey on greener pathways: use of Euphorbia condylocarpa M. bieb as reductant and stabilizer for green synthesis of Au/Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Adv 4:43477–43484

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015a) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113

    Article  Google Scholar 

  • Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A, Khalaj M (2015b) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Mol Catal A Chem 396:31–39

    Article  Google Scholar 

  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobioscience 15:433–442

    Article  Google Scholar 

  • Patil A, Bhanage B (2013a) Solar energy assisted starch-stabilized palladium nanoparticles and their application in C–C coupling reactions. J Nanosci Nanotechnol 13:5061–5068

    Article  Google Scholar 

  • Patil AB, Bhanage BM (2013b) Solar energy assisted synthesis of palladium nanoplates and its application in 2-phenoxy-1,1′-biphenyls and N,N-dimethyl-[1,1′-biphenyl] derivatives synthesis. J Mol Catal A Chem 379:30–37

    Article  Google Scholar 

  • Patil AB, Bhanage BM (2013c) Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catal Commun 36:79–83

    Article  Google Scholar 

  • Patil AB, Bhanage BM (2014) Green methodologies in the synthesis of metal and metal oxide nanoparticles. In: Nanomaterials for environmental protection. Wiley, Hoboken, pp 293–311

    Google Scholar 

  • Patil A, Bhanage B (2016) Sonochemistry: a greener protocol for nanoparticles synthesis. In: Handbook of nanoparticles. Springer, Cham, pp 143–166

    Chapter  Google Scholar 

  • Patil A, Mengane S (2016) Green synthesis of silver nano particles from Clerodendrum serratum and antimicrobial activity against human pathogens. J Bionanosci 10:491–494

    Article  Google Scholar 

  • Patil AB, Lanke SR, Deshmukh KM, Pandit AB, Bhanage BM (2012a) Solar energy assisted palladium nanoparticles synthesis in aqueous medium. Mater Lett 79:1–3

    Article  Google Scholar 

  • Patil AB, Patil DS, Bhanage BM (2012b) Selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance for Suzuki coupling reaction. J Mol Catal A Chem 365:146–153

    Article  Google Scholar 

  • Patil AB, Patil DS, Bhanage BM (2012c) ZnO nanoparticle by solar energy and their catalytic application for α-amino phosphonates synthesis. Mater Lett 86:50–53

    Article  Google Scholar 

  • Patil A, Panse CS, Mengane S (2017) Biosynthesis of silver nano particles from Tridax procumbens and its antioxidant potential: a novel biological approach. J Bionanosci 11:442–445

    Article  Google Scholar 

  • Patil AB, Huang Y, Ma L, Wu R, Meng Z, Kong L, Zhang Y, Zhang W, Liu Q, Liu XY (2019) An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens Bioelectron 142:111595

    Article  Google Scholar 

  • Patil AB, Meng Z, Wu R, Ma L, Xu Z, Shi C, Qiu W, Liu Q, Zhang Y, Lin Y et al (2020) Tailoring the meso-structure of gold nanoparticles in keratin-based activated carbon toward high-performance flexible sensor. Nanomicro Lett 12:117

    Google Scholar 

  • Paul B, Bhuyan B, Purkayastha DD, Dhar SS (2015) Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (Retz.) sw. and studies of their photocatalytic and anticoagulative activities. J Mol Liq 212:813–817

    Article  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248

    Article  Google Scholar 

  • Qiu W, Patil A, Hu F, Liu XY (2019) Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles. Small 15:1903948

    Article  Google Scholar 

  • Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402

    Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534

    Article  Google Scholar 

  • Shahzad A, Saeed H, Iqtedar M, Hussain SZ, Kaleem A, Abdullah R, Sharif S, Naz S, Saleem F, Aihetasham A, Chaudhary A (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater 2019:5168698

    Article  Google Scholar 

  • Sheny DS, Philip D, Mathew J (2012) Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 91:35–38

    Article  Google Scholar 

  • Shi C, Xing Y, Patil A, Meng Z, Yu R, Lin N, Qiu W, Hu F, Liu XY (2019) Primary and secondary mesoscopic hybrid materials of au nanoparticles@silk fibroin and applications. ACS Appl Mater Interfaces 11:30125–30136

    Article  Google Scholar 

  • Tavker N, Sharma M (2020) Designing of waste fruit peels extracted cellulose supported molybdenum sulfide nanostructures for photocatalytic degradation of RhB dye and industrial effluent. J Environ Manag 255:109906

    Article  Google Scholar 

  • Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619

    Article  Google Scholar 

  • Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod 170:1536–1543

    Article  Google Scholar 

  • Veisi H, Dadres N, Mohammadi P, Hemmati S (2019a) Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling. Mater Sci Eng C 105:110031

    Article  Google Scholar 

  • Veisi H, Mohammadi L, Hemmati S, Tamoradi T, Mohammadi P (2019b) In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega 4:13991–14003

    Article  Google Scholar 

  • Velmurugan P, Iydroose M, Mohideen MHAK, Mohan TS, Cho M, Oh B-T (2014) Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess Biosyst Eng 37:1527–1534

    Article  Google Scholar 

  • Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) Sonochemically prepared platinum−ruthenium bimetallic nanoparticles. J Phys Chem B 110:3849–3852

    Article  Google Scholar 

  • Wu R, Ma L, Patil A, Hou C, Zhu S, Fan X, Lin H, Yu W, Guo W, Liu XY (2019a) All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl Mater Interfaces 11:33336–33346

    Article  Google Scholar 

  • Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu XY (2019b) Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 15:e1901558

    Article  Google Scholar 

  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497:280–285

    Article  Google Scholar 

  • Zhang Y, Tu H, Wu R, Patil A, Hou C, Lin Z, Meng Z, Ma L, Yu R, Yu W, Liu XY (2020) Programing performance of silk fibroin superstrong scaffolds by mesoscopic regulation among hierarchical structures. Biomacromolecules 21:4169–4179

    Article  Google Scholar 

  • Zheng J-N, Li S-S, Ma X, Chen F-Y, Wang A-J, Chen J-R, Feng J-J (2014) Popcorn-like PtAu nanoparticles supported on reduced graphene oxide: facile synthesis and catalytic applications. J Mater Chem A 2:8386–8395

    Article  Google Scholar 

  • Zhu S, Zeng W, Meng Z, Luo W, Ma L, Li Y, Lin C, Huang Q, Lin Y, Liu XY (2019) Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv Mater 31:1900870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patil, A.B., Mengane, S.K., Bhanage, B.M. (2022). Green Nanoparticles: Synthesis and Catalytic Applications. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-84205-5_75

Download citation

Publish with us

Policies and ethics