Skip to main content

Advertisement

Log in

Theoretical–Experimental Methodology for Designing Hybrid Photocatalytic Reactors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hybrid photocatalytic reactors (HPR) utilize combined solar and lamp illumination to carry out the degradation of pollutants, allowing for reliable operation with reduced environmental impacts. In spite of this, few studies have addressed the design and simulation of these devices. A method is introduced for HPR design, based on simulations calibrated with experimental results. A radiative transfer model, based on the P1 approximation, is used to evaluate the local volumetric rate of photons absorption in the reaction volume. The model allows to evaluate the effective radii for artificial light (when 80% of absorption is reached) and the optical depth for solar radiation and is used to develop simplified expressions for this parameter. The radiation transfer method is coupled to a first-order kinetic model to describe the evolution of pollutant concentration. The combined model is tuned with experimental results for the degradation of Reactive Blue 69 anthraquinone dye, as a function of the accumulated radiative energy, in the presence of a TiO\(_2\) catalyst. These results were obtained by separate operation with solar radiation and lamps. Based on the developed method, 20 h duration experiments were simulated for three different HPR configurations, with different solar collection areas and lamp arrangements. Several operation modes were tested: either utilizing solar radiation during the day and artificial light at night, or a hybridizing diurnal solar operation with a variable number of lamps, depending on weather conditions. The proposed methodology can be used to optimize photo-reactor configurations and operation strategies to guarantee the discoloration and can be applied to any catalyst material that absorbs in the UV–Vis range, combined with either radiatively participating or transparent pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(A_0\) :

Model parameter

\(A_{top}\) :

Exposed area

c :

Light speed

C :

Concentration

\(\mathbb {C}\) :

Integration constant

\(e_L\) :

Energy absorbed per unit volume and time

\(e_a\) :

Absorbed photons

E :

Energy

EC:

Electric energy consumption

\(F_{\lambda }\) :

Normalized spectral radiative power

f :

Flux transmission factor

\(g _{\lambda }\) :

Spectral asymmetry parameter

\(G_{\lambda }\) :

Spectral incident radiation

h :

Planck’s constant

HPR:

Hybrid photocatalytic reactor

k :

Apparent kinetic constant

\(k'\) :

Kinetic parameter

K :

Adsorption equilibrium constant

\(\ell _{MFP}\) :

Mean free path

L :

Penetration depth

LVRPA:

Local volumetric rate of photons absorption

N :

Number of lamps

\(N_A\) :

Avogadro mole number

PR:

Photocatalytic reactor

\(q_{\lambda }\) :

Spectral radiative flux

RMSE:

Root mean square error

\(r_{dis}\) :

Instantaneous discoloration rate

\(\mathbf {r}\) :

Position vector

t :

Time

V :

Volume

\(\alpha\) :

Decaying exponent

\(\beta _{\lambda }\) :

Spectral extinction coefficient

\(\kappa _{\lambda }\) :

Spectral absorption coefficient

\(\Gamma _{max}\) :

Maximum colorant adsorbed in equilibrium per unit catalyst mass

\(\omega _{\lambda }\) :

Spectral scattering albedo

\(\Psi\) :

Adsorption parameter

\(\rho _{n,\lambda }\) :

Spectral reflectance function of order n

\(\sigma _{\lambda }\) :

Spectral scattering coefficient

\(\tau _{\lambda }\) :

Spectral transmittance function

0:

Initial

\(\lambda\) :

Spectral dependence

a :

Absorbed

ads :

Adsorbed

c :

Cumulative

cat :

Catalyst

d :

Diffusion

dye :

Dye/pollutant

eff :

Effective

in :

Incoming

N :

Normalized

T :

Total

References

  1. Kumar A, Hasija V, Sudhaik A, Raizada P, Nguyen V-H, Le QV, Singh P, Nguyen DC, Thakur S, Hussain CM (2022) The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: a critical review. Environ Res 209:112814. https://doi.org/10.1016/j.envres.2022.112814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herrmann J-M (2005) Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912-2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Top Catal 34(1):49–65. https://doi.org/10.1007/s11244-005-3788-2

    Article  CAS  Google Scholar 

  3. Pirilä M, Saouabe M, Ojala S, Rathnayake B, Drault F, Valtanen A, Huuhtanen M, Brahmi R, Keiski RL (2015) Photocatalytic degradation of organic pollutants in wastewater. Top Catal 58(14):1085–1099. https://doi.org/10.1007/s11244-015-0477-7

    Article  CAS  Google Scholar 

  4. Núñez-Flores A, Sandoval A, Mancilla E, Hidalgo-Millán A, Ascanio G (2020) Enhancement of photocatalytic degradation of ibuprofen contained in water using a static mixer. Chem Eng Res Des 156:54–63. https://doi.org/10.1016/j.cherd.2020.01.018

    Article  CAS  Google Scholar 

  5. Kasonga TK, Coetzee MAA, Kamika I, Ngole-Jeme VM, Momba MNB (2021) Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review. J Environ Manag 277:111485. https://doi.org/10.1016/j.jenvman.2020.111485

    Article  CAS  Google Scholar 

  6. Venier CM, Conte LO, Pérez-Moya M, Graells M, Nigro NM, Alfano OM (2021) A CFD study of an annular pilot plant reactor for paracetamol photo-Fenton degradation. Chem Eng J 410:128246. https://doi.org/10.1016/j.cej.2020.128246

    Article  CAS  Google Scholar 

  7. Alfano OM, Cassano AE (2009) Scaling-up of photoreactors: applications to advanced oxidation processes. In: de Lasa HI, Serrano Rosales B (eds) Advances in chemical engineering, vol 36. Academic Press, Elsevier, Amsterdam, pp 229–287. https://doi.org/10.1016/S0065-2377(09)00407-4

    Chapter  Google Scholar 

  8. Abdel-Maksoud Y, Imam E, Ramadan A (2016) TiO\(_2\) solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization–analytical review. Catalysts. https://doi.org/10.3390/catal6090138

    Article  Google Scholar 

  9. Grcica I, Puma GL (2017) Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl Catal B 211:222–234. https://doi.org/10.1016/j.apcatb.2017.04.014

    Article  CAS  Google Scholar 

  10. Zúñiga-Benítez H, Peñuela GA (2020) Solar-induced removal of benzophenones using TiO\(_2\) heterogeneous photocatalysis at lab and pilot scale. Top Catal 63(11–14):976–984. https://doi.org/10.1007/s11244-020-01332-w

    Article  CAS  Google Scholar 

  11. Kitano M, Tsujimaru K, Anpo M (2008) Hydrogen production using highly active titanium oxide-based photocatalysts. Top Catal 49(1):4. https://doi.org/10.1007/s11244-008-9059-2

    Article  CAS  Google Scholar 

  12. Ray AK (2009) Photocatalytic reactor configurations for water purification: experimentation and modeling. In: de Lasa HI, Serrano Rosales B (eds) Advances in chemical engineering, vol 36. Academic Press, Boca Raton, pp 145–184. https://doi.org/10.1016/S0065-2377(09)00405-0

    Chapter  Google Scholar 

  13. Sundar KP, Kanmani S (2020) Progression of photocatalytic reactors and it’s comparison: a review. Chem Eng Res Des 154:135–150. https://doi.org/10.1016/j.cherd.2019.11.035

    Article  CAS  Google Scholar 

  14. Vaiano V, Sacco O, Pisano D, Sannino D, Ciambelli P (2015) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160. https://doi.org/10.1016/j.ces.2015.06.023

    Article  CAS  Google Scholar 

  15. Manassero A, Satuf ML, Alfano OM (2017) Photocatalytic reactors with suspended and immobilized TiO\(_2\): comparative efficiency evaluation. Chem Eng J 326:29–36. https://doi.org/10.1016/j.cej.2017.05.087

    Article  CAS  Google Scholar 

  16. Peña-Cruz MI, Valades-Pelayo PJ, Arancibia-Bulnes CA, Pineda-Arellano CA, Salgado-Tránsito I, Martell-Chavez F (2018) Annual optical performance of a solar CPC photoreactor with multiple catalyst support configurations by a multiscale model. Int J Photoenergy 2018:8718172. https://doi.org/10.1155/2018/8718172

    Article  CAS  Google Scholar 

  17. Orozco SL, Arancibia-Bulnes CA, Suárez-Parra R (2009) Radiation absorption and degradation of an azo dye in a hybrid photocatalytic reactor. Chem Eng Sci 64(9):2173–2185. https://doi.org/10.1016/j.ces.2009.01.038

    Article  CAS  Google Scholar 

  18. Pava-Gómez B, Vargas-Ramírez X, Díaz-Uribe C, Romero H, Duran F (2021) Evaluation of copper-doped TiO\(_2\) film supported on glass and LDPE with the design of a pilot-scale solar photoreactor. Sol Energy 220:695–705. https://doi.org/10.1016/j.solener.2021.03.071

    Article  CAS  Google Scholar 

  19. Bandala ER, Arancibia-Bulnes CA, Orozco SL, Estrada CA (2004) Solar photoreactors comparison based on oxalic acid photocatalytic degradation. Sol Energy 77(5):503–512. https://doi.org/10.1016/j.solener.2004.03.021

    Article  CAS  Google Scholar 

  20. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Agüera A, Puma GL, Malato S (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO\(_2\) concentrations. J Hazard Mater 211–212:131–137. https://doi.org/10.1016/j.jhazmat.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  21. Corbel S, Becheikh N, Roques-Carmes T, Zahraa O (2014) Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem Eng Res Des 92(4):657–662. https://doi.org/10.1016/j.cherd.2013.10.011

    Article  CAS  Google Scholar 

  22. Moreira J, Serrano B, Ortiz A, de Lasa H (2011) TiO\(_2\) absorption and scattering coefficients using Monte Carl method and macroscopic balances in a photo-CREC unit. Chem Eng Sci 66(23):5813–5821. https://doi.org/10.1016/j.ces.2011.07.040

    Article  CAS  Google Scholar 

  23. Villafán-Vidales HI, Cuevas SA, Arancibia-Bulnes CA (2007) Modeling the solar photocatalytic degradation of dyes. J Sol Energy Eng 129(1):87–93. https://doi.org/10.1115/1.2391255

    Article  CAS  Google Scholar 

  24. Alfano OM, Cabrera MI, Cassano AE (1997) Photocatalytic reactions involving hydroxyl radical attack. J Catal 172(2):370–379. https://doi.org/10.1006/jcat.1997.1858

    Article  CAS  Google Scholar 

  25. Orozco SL, Villafán-Vidales HI, Arancibia-Bulnes CA (2012) Photon absorption in a hybrid slurry photocatalytic reactor: assessment of differential approximations. AIChE J 58(10):3256–3265. https://doi.org/10.1002/aic.13712

    Article  CAS  Google Scholar 

  26. Otálvaro-Marín HL, Mueses MA, Crittenden JC, Machuca-Martinez F (2017) Solar photoreactor design by the photon path length and optimization of the radiant field in a TiO2-based CPC reactor. Chem Eng J 315:283–295. https://doi.org/10.1016/j.cej.2017.01.019

    Article  CAS  Google Scholar 

  27. Acosta-Herazo R, Monterroza-Romero J, Ángel Mueses M, Machuca-Martínez F, Li Puma G (2016) Coupling the six flux absorption-scattering model to the Henyey-Greenstein scattering phase function: Evaluation and optimization of radiation absorption in solar heterogeneous photoreactors. Chem Eng J 302:86–96. https://doi.org/10.1016/j.cej.2016.04.127

    Article  CAS  Google Scholar 

  28. Ramírez-Cabrera MA, Valades-Pelayo PJ (2021) The first-order scattering P1 method. J Quant Spectrosc Radiat Transf 270:107701. https://doi.org/10.1016/j.jqsrt.2021.107701

    Article  CAS  Google Scholar 

  29. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, 4th edn. Wiley, Hoboken, p 944

    Book  Google Scholar 

  30. Orozco S, Rivero M, Montiel E, Espino Valencia J (2022) Gallium oxides photocatalysts doped with Fe ions for discoloration of rhodamine under UV and visible light. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.884758

    Article  Google Scholar 

  31. Arancibia-Bulnes CA, Cuevas SA (2004) Modeling of the radiation field in a parabolic trough solar photocatalytic reactor. Sol Energy 76(5):615–622. https://doi.org/10.1016/j.solener.2003.12.001

    Article  CAS  Google Scholar 

  32. Modest M (2013) Radiative heat transfer, 3rd edn. Academic Press, Boca Raton, p 904

    Google Scholar 

  33. Diaz-Angulo J, Lara-Ramos J, Mueses M, Hernández-Ramírez A, LiPuma G, Machuca-Martínez F (2019) Enhancement of the oxidative removal of diclofenac and of the TiO\(_2\) rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chem Eng J 381:122520. https://doi.org/10.1016/j.cej.2019.122520

  34. Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Sol Cells 15(4):365–391. https://doi.org/10.1016/0379-6787(85)90052-3

    Article  Google Scholar 

  35. Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Ind Eng Chem Res 44(17):6643–6649. https://doi.org/10.1021/ie050365y

    Article  CAS  Google Scholar 

  36. Ung-Medina F, Villicaña-Méndez M, Huirache-Acuña R, Cortés JA (2015) Experimental methodology to calculate the local relative light intensity in heterogeneous TiO\(_2\)/UV-A photocatalytic reactors. Chem Eng Res Des 97:28–35. https://doi.org/10.1016/j.cherd.2015.03.012

    Article  CAS  Google Scholar 

  37. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58(2):199–230. https://doi.org/10.1016/S0920-5861(00)00252-2

    Article  CAS  Google Scholar 

  38. Cuevas SA, Arancibia-Bulnes CA, Serrano B (2007) Radiation field in an annular photocatalytic reactor by the P1 approximation. Int J Chem React Eng. https://doi.org/10.2202/1542-6580.1589

    Article  Google Scholar 

Download references

Acknowledgements

S. Orozco acknowledges CONACYT by Consolidation Scholarship M1 and M2 (I1200/224/2021). M. Rivero acknowledges UNAM-DGAPA-PAPIIT Project IA100621 and Alejandro Pompa for his technical support.

Author information

Authors and Affiliations

Authors

Contributions

SO: Conceptualization, Writing—original draft, Review & editing, Methodology, Investigation, Validation. MR: Software, Visualization, Writing—original draft, Review & editing. RS: Conceptualization, Review & editing, MT: Data Curation, Review. CA: Conceptualization, Writing—review & editing, Methodology, Investigation, Supervision.

Corresponding author

Correspondence to Sayra Orozco.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 \(\text {LVRPA}_{N} \left( L ,C_{cat} \right)\)

It is possible to extend the model presented in Sect. 6.2 by fitting a two-parameter exponential model to express the normalized LVRPA in terms of the distance L and \(C_{cat}\) as

$$\begin{aligned} \text {LVRPA}_{N} \left( L ,C_{cat} \right) = \exp \left( - \frac{L}{A_2} \left( 1 + B_2 C_{cat} \right) \right) \end{aligned}$$
(19)

where L is expressed in m and \(C_{cat}\) in mg L−1. For this model, the fitting parameters are given in Table 4, and is valid for \(C_{cat}\) in the range of 5–100 mg L−1. In this case \(A_2\) is given in m while \(B_2\) in L mg−1. Note that the higher the catalyst concentration, the faster the normalized LVRPA decays, which is physically consistent. It is noteworthy to mention that for a given \(C_{cat}\), Eq. (19) reduces to the model given by Eq. (17) with an error below \(2\%\).

Table 4 Fitting parameter and statistical measures for the normalized LVRPA for the TiO\(_2\) catalyst concentration for the model with two variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orozco, S., Rivero, M., Suárez-Parra, R. et al. Theoretical–Experimental Methodology for Designing Hybrid Photocatalytic Reactors. Top Catal 65, 1000–1014 (2022). https://doi.org/10.1007/s11244-022-01677-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01677-4

Keywords

Navigation